Propane torch is lit inside a hot air balloon during pre-flight preparation because the heat from the touch is needed to heat the cold air inside the balloon, so that the air will expand and become less dense and rise, thus providing a lift for the balloon. This is line with charle's law, which states that, the volume of a fixed mass of ideal gas is directly proportional to the absolute temperature. This law implies that, as the temperature of the air inside the balloon increase, the volume of the balloon also increases.
Answer:
A source of electricity, a wire coil, and an iron core
Explanation:
An electromagnet has three critical components:
1. A source of electricity
This is often a battery.
It generates the electric current that produces the magnetic field.
2. A wire coil
The wire carries the electric current.
Stacking the wire into loops makes a stronger magnetic field.
The more loops in the coil, the stronger the field.
3. An iron core
An iron core greatly increases the strength of the magnetic field within it and at its ends.
Here, the three different notation of the p-orbital in different sub-level have to generate
The value of azimuthal quantum number (l) for -p orbital is 1. We know that the magnetic quantum number
depends upon the value of l, which are -l to +l.
Thus for p-orbital the possible magnetic quantum numbers are- -1, 0, +1. So there will be three orbitals for p orbitals, which are designated as
,
and
in space.
The three p-orbital can be distinguish by the quantum numbers as-
For 2p orbitals (principal quantum number is 2)
1) n = 2, l = 1, m = -1
2) n = 2, l = 1, m = 0
3) n = 2, l = 1, m = +1
Thus the notation of different p-orbitals in the sub level are determined.
Did you take the test? what was the answer Im stuck on this one too
Coulomb's law mathematically is:
F = kQ₁Q₂/r²
we integrate this with respect to distance to obtain the expression for energy:
E = kQ₁Q₂/r; where k is the Coulomb's constant = 9 x 10⁹; Q are the charges, r is the seperation
Charge on proton = charge on electron = 1.6 x 10⁻¹⁹ C
E = (9 x 10⁹ x 1.6 x 10⁻¹⁹ x 1.6 x 10⁻¹⁹) / (185 x 10⁻¹²)
E = 1.24 x 10⁻¹⁸ Joules per proton/electron pair
Number of pairs in one mole = 6.02 x 10²³
Energy = 6.02 x 10²³ x 1.24 x 10⁻¹⁸
= 746.5 kJ