The force on the wall is actually the pressure exerted by gas molecules
Higher the pressure more the force exerted on the walls of container
The pressure depends upon the number of molecules of a gas
In a mixture of gas the pressure depends upon the mole fraction of the gas
As given the mole fraction of He is more than that of H2 therefore He will exert more pressure on the wall
The ratio of impact will be
H2 / He = 2/3 / 1/3 = 2: 1
Answer:
H+/H3O , H2O
Explanation:
The ability to be a proton donor is the Bronsted-Lowry definition of acids. The Lewis definition of an acid is an electron pair acceptor, which covers molecules liKE BF3
The ability to accept a pair of electrons is what is common to all acids, not the ability to be a proton donor.
All acid solutions contain hydronium ions (H3O+), hydroxide ions (OH-) and water molecules. Each different acid solution will then have an anion that is exclusive to that acid. For example, hydrochloric acid solution will contain all of the above and chloride ions (Cl-).
All acids contain the acidic substance dissolved in water. Water naturally dissociates to a small amount, creating hydronium and hydroxide ions. But most of the water remains as water molecules.
Then when we add an acid, like HCl, the oxygen on the water attracts the hydrogen from the HCl. The electrons in the covalent bond remain with the chlorine, giving it a negative charge and thus it becomes the chloride ion (Cl-). The hydrogen now has a positive charge and as said before, is attracted to the water (specifically the lone pair of electrons on the oxygen) to create hydronium ions.
This creates extra hydronium ions, making the solution acidic. But remember, there are still water molecules, hydroxide ions and the negative ion all in solution for all acids.
We are tasked to solve for the volume of the gas that occupies when pressure and temperature changes to 400 Torr and 200 Kelvin from Torr and 400 Kelvin. We can use ideal gas law assuming constant gas composition and close system. The solution is shown below:
P1V1 / T1 = P2V2 / T2
V2 = P1V1T2 / T1P2
V2 = 800*72*200 / 400*400
V2 = 72 ml
The answer for the volume is 72 ml.
Answer:
Density is a value for mass, such as kg, divided by a value for volume, such as m3. Density is a physical property of a substance that represents the mass of that substance per unit volume. It is a property that can be used to describe a substance. We calculate as follows:
Volume = 60.0 g ( 1 mL / 0.70 g ) = 85.71 mL
Therefore, the correct answer is option B.
Explanation:
A: The Equator To The Poles