Answer:
The final pressure is approximately 0.78 atm
Explanation:
The original temperature of the gas, T₁ = 263.0 K
The final temperature of the gas, T₂ = 298.0 K
The original volume of the gas, V₁ = 24.0 liters
The final volume of the gas, V₂ = 35.0 liters
The original pressure of the gas, P₁ = 1.00 atm
Let P₂ represent the final pressure, we get;



∴ The final pressure P₂ ≈ 0.78 atm.
Answer:
11482 ppt of Li
Explanation:
The lithium is extracted by precipitation with B(C₆H₄)₄. That means moles of Lithium = Moles B(C₆H₄)₄. Now, 1 mole of B(C₆H₄)₄ produce the liberation of 4 moles of EDTA. The reaction of EDTA with Mg²⁺ is 1:1. Thus, mass of lithium ion is:
<em>Moles Mg²⁺:</em>
0.02964L * (0.05581mol / L) = 0.00165 moles Mg²⁺ = moles EDTA
<em>Moles B(C₆H₄)₄ = Moles Lithium:</em>
0.00165 moles EDTA * (1mol B(C₆H₄)₄ / 4mol EDTA) = 4.1355x10⁻⁴ mol B(C₆H₄)₄ = Moles Lithium
That means mass of lithium is (Molar mass Li=6.941g/mol):
4.1355x10⁻⁴ moles Lithium * (6.941g/mol) = 0.00287g. In μg:
0.00287g * (1000000μg / g) = 2870μg of Li
As ppt is μg of solute / Liter of solution, ppt of the solution is:
2870μg of Li / 0.250L =
<h3>11482 ppt of Li</h3>
Answer:
option D = 246 g/mol
Explanation:
Molar mass of MgSO₄⋅ 7H₂O:
Molar mass = 24.305 + 32.065 + 16×4 + 7 (1.008×2 +16)
Molar mass = 24.305 + 32.065 + 64 + 7 (18.016)
Molar mass = 24.305 + 32.065 + 64 + 126.112
Molar mass = 246.482 g /mol
Refer to the diagram shown below.
The second axis is at the centroid of the rod.
The length of the rod is L = 100 cm = 1 m
The first axis is located at 20 cm = 0.2 m from the centroid.
Let m = the mass of the rod.
The moment of inertia about the centroid (the 2nd axis) is

According to the parallel axis theorem, the moment of inertia about the first axis is

The ratio of the moment of inertia through the 2nd axis (centroid) to that through the 1st axis is

Answer: 0.676
Answer:
Explanation:
Density of gold is 19.3 g / cm³
Density of copper is 8.96 g / cm³
Density of bronze is 8.7 g / cm³
Hence when the gold and copper or bronze are mixed , the density of gold will be reduced due to less density of copper and bronze in comparison to that of gold.