1. Answer: C. The objects' temperatures have both changed by the same amount.
Explanation:
An object is said to be in thermal equilibrium when the objects have attained same temperature. Heat transfer from hotter object to colder one in contact takes place until the temperature of the two are equal. It is not necessary that the temperature of both the objects changes by same amount. After attainment of thermal equilibrium, the temperature of the objects stop changing and the tiny particles of the object move at the same rate.
Hence, the objects' temperatures have both changed by the same amount. is not necessarily true for two objects in thermal equilibrium.
2. Answer: C. Objects are made of tiny particles, and their motion depends on the temperature.
Explanation:
Kinetic theory of heat states that the kinetic energy of constituent particles determine the temperature of the object. The statement that best explains this is Objects are made of tiny particles, and their motion depends on the temperature.
Barfoed's test is a concoction test utilized for identifying the nearness of monosaccharides. It depends on the diminishment of copper(II) acetic acid derivation to copper(I) oxide (Cu2O), which frames a block red hasten.
Barfoed's reagent comprises of a 0.33 molar arrangement of unbiased copper acetic acid derivation in 1% acidic corrosive arrangement. The reagent does not keep well and it is, thusly, fitting to make it up when it is really required. May store uncertainly as per a few MSDS's.
Here we have to get the right answers which include the given phrase.
The correct answers are as following:
High boiling and melting points: Hydrogen bond increase the amount of energy required for phase changes to occur, thereby raising the boiling and melting points.
High specific heat: Hydrogen bond increase the amount of energy required for molecules to increase the speed, thereby raising the specific heat.
High surface tension: Hydrogen bonds produce strong inter molecular attractions, which increase surface tension.
The incorrect answer:
Lower density as a solid than as a liquid: actually, density of solid is more than density of liquid as hydrogen bonds in solid produce strong inter molecular attractions among molecules, which aggregates molecules together, hence volume of associated molecules reduces. Therefore, density of solid is more than that of liquid.
Hydrogen bonding is a type of intermolecular forces of attraction in which hydrogen atom is bonded to one of the most electronegative atoms. This gives a partial positive charge to hydrogen atom and a partial negative charge to the electronegative atom involved in the bonding. The electronegative atoms that can form hydrogen bonding are fluorine (F), nitrogen (N), and oxygen (O).
Therefore the correct option is,
A) NH3
Total in pot=28 L
400 mL in each bowl
16 bowls filled
1000mL=1L
16 bowls(400mL/1 bowl)=6400mL
6400mL(1L/1000mL)=6.4L
28L-6.4L=21.6 L