Answer:
- Molar mass = 608.36 g/mol
Explanation:
It seems the question is incomplete. However a web search us shows this data:
" Reserpine is a natural product isolated from the roots of the shrub Rauwolfia serpentina. It was first synthesized in 1956 by Nobel Prize winner R. B. Woodward. It is used as a tranquilizer and sedative. When 1.00 g reserpine is dissolved in 25.0 g camphor, the freezing-point depression is 2.63 °C (Kf for camphor is 40 °C·kg/mol). Calculate the molality of the solution and the molar mass of reserpine. "
The <em>freezing-point depression</em> is expressed by:
We put the data given by the problem and <u>solve for m</u>:
- 2.63 °C = 40°C·kg/mol * m
For the calculation of the molar mass:<em> Molality</em> is defined as moles of solute per kilogram of solvent:
- 0.06575 m = Moles reserpine / kg camphor
- 25.0 g camphor ⇒ 25.0/1000 = 0.025 kg camphor
We<u> calculate moles of reserpine:</u>
- 0.06575 m = Moles reserpine / 0.025 kg camphor
- Moles reserpine = 1.64x10⁻³ mol
Finally we use the mass of reserpine and the moles to calculate <u>the molar mass</u>:
- 1.00 g reserpine / 1.64x10⁻³ mol = 608.36 g/mol
<em>Keep in mind that if the data in your problem is different, the results will be different. But the solving method remains the same.</em>
Answer: Option (A) is the correct answer.
Explanation:
Newton's third law states that when one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body.
In short we can say that every action has an equal and opposite reaction.
For example, when we hit a wooden table hardly with our hands then we are applying a force on the table and on the other hand table is applying a force in the opposite direction on our hand due to which we get hurt.
Therefore, when force of gravity pulls the man in downward direction then man pulling upward on the earth is applying a force in opposite direction of gravitational pull.
Answer:
ΔG° = -118x10³ J/mol
Explanation:
The two half-reactions in the cell are:
Oxidation half-reaction:
Co(s) → Co²⁺(aq) + 2e⁻; E° = -0,28V
Reduction half-reaction:
Cu²⁺(aq)+2e⁻ → Cu(s); E° = 0,34V
The E° of the cell is defined as:

Replacing:
0,34V - (-0,28V) = 0,62V
It is possible to obtain the keq from E°cell with Nernst equation thus:
nE°cell/0,0592 = log (keq)
Where:
E°cell is standard electrode potential (0.62 V)
n is number of electrons transferred (2 electrons, from the half-reactions)
Replacing:
0,62V×2/0,0592 = log (keq)
20,946 = log keq
keq = 8,83x10²⁰≈ 5,88x10²⁰
ΔG° is defined as:
ΔG° = -RT ln Keq
Where R is gas constant (8,314472 J/molK) and T is temperature (298K):
ΔG° = -8,314472 J/molK×298K ln5,88x10²⁰
<em>ΔG° = -118x10³ J/mol</em>
<em />
I hope it helps!
Answer:
1. Galvanic oxidation. Example is the corrosion of aluminium wires when in contact with copper wires under wet conditions.
2. Rainwater or Damp/moist air
3. Chromium-plated steel screws or stainless steel screws or galvanized steel screws
Explanation:
1. Galvanic oxidation or corrosion occurs when two different metals with different electrode potentials are brought into contact with each other by means of an electrolyte (usually a aqueous solution), such that a redox reaction occurs leading to one metal with the more negative electrode potential (the anode) becoming oxidized, while the other less negative potential (the cathode) is reduced.
In order for galvanic corrosion to occur, three elements are required.
i. Two metals with different corrosion potentials (anode and cathode)
ii. Direct metal-to-metal electrical contact
iii. A conductive electrolyte solution (e.g. water) must connect the two metals on a regular basis.
For example oxidation (corrosion) of aluminium wires when in contact with copper wire under wet conditions.
2. The most likely electrolyte will be rainwater containing dissoved solutes (if the panel is in an exposed part of the house) or damp/moist air.
3. From the table, the most likely screw will be chromium-plated steel screws or stainless steel (made of iron and nickel) screws or galvanized steel (zinc-plated) screws.
All these possible screw components have a more negative electrode potential than copper. Thus they will serve as the anode in a galvanic oxidation with copper.
<span> Mg(OH)2(s) + 2HCl(aq) yield MgCl2(aq) + 2H2O(l)
grams HCl required = (50.6 grams Mg(OH)2) * (1 mol Mg(OH)2 / 58.3197 grams Mg(OH)2) * (2 mol HCl / 1 mol Mg(OH)2) * (36.453 grams HCl / 1 mol HCl) = 63.26 grams HCl required
Since there are only 45.0 grams HCl, then HCl is the limiting reactant.
theoretical yield MgCl2 = (45.0 grams HCl) * (1 mol HCl / 36.453 grams HCl) * (1 mol MgCl2 / 2 mol HCl) * (95.211 grams MgCl2 / 1 mol MgCl2) = 58.6 grams MgCl2 </span>