To find the number of moles of gas we can use the ideal gas law equation, we dont need to use the mass of gas given as we only have to find the number of moles
PV = nRT
P - pressure - 300.0 kPa
V - volume - 25.0 x 10⁻³ m³
n - number of moles
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature in Kelvin - 27 °C + 273 = 300 K
substituting these values in the equation
300.0 kPa x 25.0 x 10⁻³ m³ = n x 8.314 Jmol⁻¹K⁻¹ x 300 K
n = 3.01 mol
number of mols of gas - 3.01 mol
100°C because all the molecules are moving the fastest past each other
Answer:
P1 = 2.5ATM
Explanation:
V1 = 28L
T1 = 45°C = (45 + 273.15)K = 318.15K
V2 = 34L
T2 = 35°C = (35 + 273.15)K = 308.15K
P1 = ?
P2 = 2ATM
applying combined gas equation,
P1V1 / T1 = P2V2 / T2
P1*V1*T2 = P2*V2*T1
Solving for P1
P1 = P2*V2*T1 / V1*T2
P1 = (2.0 * 34 * 318.15) / (28 * 308.15)
P1 = 21634.2 / 8628.2
P1 = 2.5ATM
The initial pressure was 2.5ATM
Answer : The balanced half-reaction in a basic solution will be,
Explanation :
Redox reaction or Oxidation-reduction reaction : It is defined as the reaction in which the oxidation and reduction reaction takes place simultaneously.
Rules for the balanced chemical equation in basic solution are :
First we have to write into the two half-reactions.
Now balance the main atoms in the reaction.
Now balance the hydrogen and oxygen atoms on both the sides of the reaction.
If the oxygen atoms are not balanced on both the sides then adding water molecules at that side where the more number of oxygen are present.
If the hydrogen atoms are not balanced on both the sides then adding hydroxide ion
at that side where the less number of hydrogen are present.
Now balance the charge.

- Now balance the oxygen atoms.

- Now balance the hydrogen atoms.


The balanced half-reaction in a basic solution will be,

A) 5.2 x 10^2
B) 86.
C) 6.4 x 10^3
D) 5.0
E) 22.
F) 0.89