Answer:
The empirical formula of compound is C₂H₆O.
Explanation:
Given data:
Mass of carbon = 12 g
Mass of hydrogen = 3 g
Mass of oxygen = 8 g
Empirical formula of compound = ?
Solution:
First of all we will calculate the gram atom of each elements.
no of gram atom of carbon = 12 g / 12 g/mol = 1 g atoms
no of gram atom of hydrogen = 3 g / 1 g/mol = 3 g atoms
no of gram atom of oxygen = 8 g / 16 g/mol = 0.5 g atoms
Now we will calculate the atomic ratio by dividing the gram atoms with the 0.5 because it is the smallest number among these three.
C:H:O = 1/0.5 : 3/0.5 : 0.5/0.5
C:H:O = 2 : 6 : 1
The empirical formula of compound will be C₂H₆O
Propane torch is lit inside a hot air balloon during pre-flight preparation because the heat from the touch is needed to heat the cold air inside the balloon, so that the air will expand and become less dense and rise, thus providing a lift for the balloon. This is line with charle's law, which states that, the volume of a fixed mass of ideal gas is directly proportional to the absolute temperature. This law implies that, as the temperature of the air inside the balloon increase, the volume of the balloon also increases.
Answer:
A source of electricity, a wire coil, and an iron core
Explanation:
An electromagnet has three critical components:
1. A source of electricity
This is often a battery.
It generates the electric current that produces the magnetic field.
2. A wire coil
The wire carries the electric current.
Stacking the wire into loops makes a stronger magnetic field.
The more loops in the coil, the stronger the field.
3. An iron core
An iron core greatly increases the strength of the magnetic field within it and at its ends.
Answer: the mass number of the daugther atom is 232,
Explanation:
1) Alpha (α) decay is a nuclear reaction in which a nucleus (parent's nucleus) emits an alpha (α) particle and leads to a different atom (daughter atom).
2) The alpha (α) particle is a nucleus of helium atom, i,e, a nucleus with two protons and two neutrons. The symbol used for the α particles is <em>⁴₂He</em>, where the superscript 4 indicates the mass number (2 protons + 2 neutrons = mass number 4), and the subscript 2 indicates the atomic number (number of protons).
3) Then, to determine the mass number of the daughter atom you just need to do a mass number balance:
mass number of the parent atom = mass number of the daugther atom + mass number of the α particle.
The mass number of the radioactive (parent) atom is 90 protons + 142 neutrons = 232.
∴ 232 = x + 4 ⇒ x = 232 - 4 = 228 ← answer.
The full equation may help you to have a wider vision of the problem:
²³²₉₀ X → ⁴₂ He + ²²⁸₈₈ Y
Note this:
- 232 = 4 + 228 (this is a mass number balance)
- 90 = 2 + 88 (this is an atomic number balance)
- X is the parent atom, and Y is the daughter atom
- You can use a periodic table to determine the identity of the unknown atoms (using the atomic numbers).