Bronze alloy and porcelain dentures
Answer:
The empirical formula is = 
The molecular formula = 
Explanation:
% of C = 10.13
Molar mass of C = 12.0107 g/mol
% moles of C = 10.13 / 12.0107 = 0.8434
% of Cl = 89.87
Molar mass of Cl = 35.453 g/mol
% moles of Cl = 89.87 / 35.453 = 2.5349
Taking the simplest ratio for C and Cl as:
0.8434 : 2.5349
= 1 : 3
The empirical formula is = 
Molecular formulas is the actual number of atoms of each element in the compound while empirical formulas is the simplest or reduced ratio of the elements in the compound.
Thus,
Molecular mass = n × Empirical mass
Where, n is any positive number from 1, 2, 3...
Mass from the Empirical formula = 12*1 + 3*35.5 = 118.5 g/mol
Molar mass = 237 g/mol
So,
Molecular mass = n × Empirical mass
237 = n × 118.5
⇒ n ≅ 2
The molecular formula = 
To determine the time it takes to completely vaporize the given amount of water, we first determine the total heat that is being absorbed from the process. To do this, we need information on the latent heat of vaporization of water. This heat is being absorbed by the process of phase change without any change in the temperature of the system. For water, it is equal to 40.8 kJ / mol.
Total heat = 40.8 kJ / mol ( 1.50 mol ) = 61.2 kJ of heat is to be absorbed
Given the constant rate of 19.0 J/s supply of energy to the system, we determine the time as follows:
Time = 61.2 kJ ( 1000 J / 1 kJ ) / 19.0 J/s = 3221.05 s
Simply put, MA = Force Out / Force in. That's the way it is usually stated. The force out is normally what you need to move. The force in is what you need to supply to get the force out. Most machines will give you an MA of more than 1. Some (like your arm) will give you less than 1 and others (like this one) will give you exactly one.
This one is frictionless, otherwise it would slip into less than one if it had friction.
Answer B
The heat that is required to raise the temperature of an object is calculated through the equation,
heat = mass x specific heat x (T2 - T1)
Specific heat is therefore calculated through the equation below,
specific heat = heat / (mass x (T2 - T1))
Substituting,
specific heat = 645 J / ((28.4 g)(15.5 - - 11.6))
The value of specific heat from above equation is 0.838 J/g°C.