Answer:
4. The combined volume of the Ar atoms is too large to be negligible compared with the total volume of the container.
Explanation:
Deviations from ideality are due to intermolecular forces and to the nonzero volume of the molecules themselves. At infinite volume, the volume of the molecules themselves is negligible compared with the infinite volume the gas occupies.
However, the volume occupied by the gas molecules must be taken into account. Each <u>molecule does occupy a finite, although small, intrinsic volume.</u>
The non-zero volume of the molecules implies that instead of moving in a given volume V they are limited to doing so in a smaller volume. Thus, the molecules will be closer to each other and repulsive forces will dominate, resulting in greater pressure than the one calculated with the ideal gas law, that means, without considering the volume occupied by the molecules.
The concentration of a solution is the number of moles of solute per fixed volume of solution.
Concentration (C) = number of moles of solute (n) / volume of the solution (v)
we have to find the volume of the solution when 36.0 g of Ca(OH)₂ is added to water to make a solution of concentration 0.530 M
mass of Ca(OH)₂ added - 36.0 g
number of moles of Ca(OH)₂ - 36.0 g / 74.1 g/mol = 0.486 mol
we know the concentration of the solution prepared and the number of moles of Ca(OH)₂ added, substituting these values in the above equation, we can find the volume of the solution
C = n/v
0.530 mol/L = 0.486 mol / V
V = 0.917 L
answer is 0.917 L
Answer:
The doctor is discussing an Ocular Hypertension disease.
Explanation:
If we have a small space with a defined volume like in this case an eye, when we fill this space with a liquid, the liquid will occupy the whole volume available, and when it is much liquid or fluid, and the volume of the eye can not expand it will start to generate an internal pressure. This higher pressure is called Hypertension.
Answer:
The answer to your question is V2 = 825.5 ml
Explanation:
Data
Volume 1 = 750 ml
Temperature 1 = 25°C
Volume 2= ?
Temperature 2 = 55°C
Process
Use the Charles' law to solve this problem
V1/T1 = V2/T2
-Solve for V2
V2 = V1T2 / T1
-Convert temperature to °K
T1 = 25 + 273 = 298°K
T2 = 55 + 273 = 328°K
-Substitution
V2 = (750 x 328) / 298
-Simplification
V2 = 246000 / 298
-Result
V2 = 825.5 ml
Answer:
K = 6.5 × 10⁻⁶
Explanation:
C₅H₆O₃ ⇄ C₂H₆ + 3CO
Use PV=nRT to find the initial pressure of C₅H₆O₃
P (2.50) = (0.0493) (0.08206) (473)
P = 0.78atm
C₅H₆O₃ ⇄ C₂H₆ + 3CO
0.78atm 0 0
0.78 - x x 3x
1.63atm = 0.78 - x + x + 3x
P(total) = 0.288atm
C₅H₆O₃ = 0.78 - 0.288
= 0.489atm
C₂H₆ = 0.288atm
CO = 0.846atm

= 0.379


= 6.5 × 10⁻⁶