A branched alkane has HIGHER boiling point relative to the isomeric linear alkane. There are STRONGER london force interactions in the branched alkane.
:-) ;-)
Answer:
Explanation:I would need more info to understand this question but explaining molecules is pretty easy tho
The molarity is the number of moles in 1 L of the solution.
The mass of NH₃ given - 2.35 g
Molar mass of NH₃ - 17 g/mol
The number of NH₃ moles in 2.35 g - 2.35 g / 17 g/mol = 0.138 mol
The number of moles in 0.05 L solution - 0.138 mol
Therefore number of moles in 1 L - 0.138 mol / 0.05 L x 1L = 2.76 mol
Therefore molarity of NH₃ - 2.76 M
The molarity of solution made by diluting 26.5ml of 6.0ml hno3 to a volume of 250ml is calculated using the following formula
M1V1 = M2V2, where
M1 = molality 1 (6.00m)
V1= volume 1 (26.5 ml)
M2 = molarity 2(?)
v2=volume 2 (250)
M2 = M1V1/V2
M2= 6 x26.5/250 = 0.636 M
Answer:
The mass of the solute and the volume of the solution.
Explanation:
Hello,
In this case, given the formula of molarity:

In such a way, since the moles could not be directly measured, we must measure the mass of the solute and by using its molar mass, one could compute its moles. Moreover, since the solution is composed by the solvent (typically water) and the solute, we consequently must measure the volume of the solution needed for the preparation of such concentration-known solution. In such a way, we can actually prepare the required solution.
Best regards.