1) we calculate the molar mass of He (helium) and Kr (Krypton).
atomic mass (He)=4 u
atomic mas (Kr)=83.8 u
Therefore the molar mass will be:
molar mass(He)=4 g/mol
molar mass(Kr)=83.8 g/mol.
1) We can find the next equation:
mass=molar mass x number of moles.
x=number of moles of helium
y=number of moles of helium.
(4 g/mol) x +(83.8 g/mol)y=103.75 g
Therefore, we have the next equation:
(1)
4x+83.8y=103.75
2) We can find other equation:
We have 30% helium atoms and 70% Kryptum atoms, therefore we have 30% Helium moles and 70% of Krypton moles.
1 mol is always 6.022 * 10²³ atoms or molecules, (in this case atoms).
Then:
x=number of moles of helium
y=number of moles of helium.
(x+y)=number of moles of our sample.
x=30% of (x+y)
Therefore, we have this other equation:
(2)
x=0.3(x+y)
With the equations(1) and (2), we have the next system of equations:
4x+83.8y=103.75
x=0.3(x+y) ⇒ x=0.3x+0.3y ⇒ x-0.3x=0.3y ⇒ 0.7 x=0.3y ⇒ x=0.3y/0.7
⇒x=3y/7
We solve this system of equations by substitution method.
x=3y/7
4(3y/7)+83.8y=103.75
lower common multiple)7
12y+586.6y=726.25
598.6y=726.25
y=1.21
x=3y/7=3(1.21)/7=0.52
We have 0.52 moles of helium and 1.21 moles of Krypton.
1 mol=6.022 * 10²³ atoms
Total number of particles=(6.022 *10²³ atoms /1 mol) (number of moles of He+ number of moles of Kr).
Total number of particles=6.022 * 10²³ (0.52+1.21)=6.022 * 10²³ (1.73)=
=1.044 * 10²⁴ atoms.
Answer: The sample have 1.044 * 10²⁴ atoms.
Instrumental methods of analysis rely on machines.The visualization of single molecules, single biological cells, biological tissues and nanomaterials is very important and attractive approach in analytical science.
There are several different types of instrumental analysis. Some are suitable for detecting and identifying elements, while others are better suited to compounds. In general, instrumental methods of analysis are:
-Fast
-Accurate (they reliably identify elements and compounds)
-Sensitive (they can detect very small amounts of a substance in a small amount of sample)
The correct values I believe would be a=1 b=-2 and c=-3.
Answer: The molecular formula will be 
Explanation:
If percentage are given then we are taking total mass is 100 grams.
So, the mass of each element is equal to the percentage given.
Mass of C= 70.6 g
Mass of H = 5.9 g
Mass of O = 23.5 g
Step 1 : convert given masses into moles.
Moles of C =
Moles of H =
Moles of O =
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For C = 
For H = 
For O =
The ratio of C : H: O= 4: 4:1
Hence the empirical formula is 
The empirical weight of
= 4(12)+4(1)+1(16)= 68g.
The molecular weight = 136 g/mole
Now we have to calculate the molecular formula.

The molecular formula will be=