Answer:-A. It is less than 890 kJ/mol because the amount of energy required to break bonds is less than the amount of energy released in forming bonds.
Explanation: Endothermic reactions are defined as the reactions in which energy of the product is greater than the energy of the reactants. The total energy is absorbed in the form of heat and
for the reaction comes out to be positive.
Exothermic reactions are defined as the reactions in which energy of the product is lesser than the energy of the reactants. The total energy is released in the form of heat and
for the reaction comes out to be negative.
In the formation of new bonds more energy is released than is required to break the existing bonds, heat is released.
In the formation of bonds less energy is released than is required to break the existing bonds, heat is absorbed.
Answer:
-154KJ/mol
Explanation:
mole of 100ml sample of 0.2M aqueous HCl = Molarity × volume in Liter
= 0.2 × 100 / 1000 ( 1L = 1000 ml) = 0.02 mol and 0.02 mole of HCl solution require 0.02 mole of ammonia according to the mole ratio in the balanced equation.
Heat loss by the reaction = heat gain by calorimeter = mcΔT + 480 J/K
where m is the mass of water = 100g + 100g = 200g since mass of 100ml of water = 100g and it is in both of them and specific heat capacity of water 4.184 J/gK
heat gain by calorimeter = (4.184 × 200 + 480) × 2.34 = 3081.3 J
ΔH per mole = heat loss / number of mole = 3081.3 / 0.02 = 154065.6 = -154KJ/mol
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
<span>3O2(g) <--> 2O3(g);
Keq = 1 = [O3]^2/[O2]^3
So [O2]^3 = [O3]^2
Thus A) is correct</span>
Maybe 24% not sure try researching it on google
Answer:
<ERROR>-----------------------------------------------------------------------------<ERROR>
Explanation: