Answer:
Carson models how the continental crust varies in thickness. Marisol records atmospheric and oceanic temperatures at several beaches. Eliza analyzes seismic wave activity from an earthquake using a computer model.
Answer:
Explanation:
It will be better to use solvents that are lighter than water, because their density has an influence on the miscibility . This will give you a better separation during extraction.
Answer:
Chemicals A and B form an endothermic reaction, and chemicals C and D form an exothermic reaction.
Explanation:
The reaction that produced chemical C is an endothermic reaction whereas, the reaction between C and D is an exothermic one.
An exothermic change is one in which heat is liberated to the surroundings. So the surrounding becomes hotter at the end of the reaction.
An endothermic reaction is a change in which heat is absorbed from the surrounding and hence the surrounding colder at the end of the change.
- We can see that the first reaction is endothermic.
- The second reaction is exothermic.
Here we have to get the right answers which include the given phrase.
The correct answers are as following:
High boiling and melting points: Hydrogen bond increase the amount of energy required for phase changes to occur, thereby raising the boiling and melting points.
High specific heat: Hydrogen bond increase the amount of energy required for molecules to increase the speed, thereby raising the specific heat.
High surface tension: Hydrogen bonds produce strong inter molecular attractions, which increase surface tension.
The incorrect answer:
Lower density as a solid than as a liquid: actually, density of solid is more than density of liquid as hydrogen bonds in solid produce strong inter molecular attractions among molecules, which aggregates molecules together, hence volume of associated molecules reduces. Therefore, density of solid is more than that of liquid.
Answer:
0.60 mol·L⁻¹
Explanation:
Data:
LiBr: c = 0.50 mol/L; V =300 mL
RbBr: c = 0.70 mol/L; V =300 mL
1. Calculate the moles of Br⁻ in each solution
(a) LiBr

(b) RbBr

2. Calculate the molar concentration of Br⁻
(a) Moles of Br⁻
n = 0.150 mol + 0.210 mol = 0.360 mol
(b) Volume of solution
V = 300 mL + 300 mL = 600 mL = 0.600 L
(c) Molar concentration
