NH4I (aq) + KOH (aq) in chemical equation gives
NH4I (aq) + KOH (aq) = KI (aq) + H2O(l) + NH3 (l)
Ki is in aqueous state H2o is in liquid state while NH3 is in liquid state
from the equation above 1 mole of NH4I (aq) react with 1 mole of KOH(aq) to form 1mole of KI(aq) , 1mole of H2O(l) and 1 Mole of NH3(l)
Answer:
see attached
Explanation:
Dimensional analysis is useful whenever dimensions are involved. Unless it is quite clear that all of the problem dimensions are consistent (for example, all speeds in miles per hour, or all angles in degrees), dimensional analysis can be useful for keeping the math straight.
Only units of the same dimensions can be added or subtracted. When numbers are multiplied or divided or raised to a power, dimensional analysis can help ensure that the appropriate operations are being used on appropriate numbers. It can also help ensure that dimensions are being combined properly to give appropriate derived dimensions.
__
Scientific notation is a way of writing very large or very small numbers compactly. It can also help with "order of magnitude" estimates. If an answer using SI prefixes is appropriate, or if a number can be conveniently expressed in standard form, then scientific notation is usually not required.
On the other hand, SI prefixes may not be appropriate in some cases, or a problem may specify that scientific notation be used for expressing results. In those instances, scientific notation should be used.
<h3>
Answer:</h3>
19.3 g/cm³
<h3>
Explanation:</h3>
Density of a substance refers to the mass of the substance per unit volume.
Therefore, Density = Mass ÷ Volume
In this case, we are given;
Mass of the gold bar = 193.0 g
Dimensions of the Gold bar = 5.00 mm by 10.0 cm by 2.0 cm
We are required to get the density of the gold bar
Step 1: Volume of the gold bar
Volume is given by, Length × width × height
Volume = 0.50 cm × 10.0 cm × 2.0 cm
= 10 cm³
Step 2: Density of the gold bar
Density = Mass ÷ volume
Density of the gold bar = 193.0 g ÷ 10 cm³
= 19.3 g/cm³
Thus, the density of the gold bar is 19.3 g/cm³
When heat energy is supplied to a material it can raise the temperature of mass of the material.
Specific heat is the amount of energy required by 1 g of material to raise the temperature by 1 °C.
equation is
H = mcΔt
H - heat energy
m - mass of material
c - specific heat of the material
Δt - change in temperature
substituting the values in the equation
120 J = 10 g x c x 5 °C
c = 2.4 Jg⁻¹°C⁻¹
Answer:
Avogadro’s number was calculated by determining the number of atoms in 12.00 g of carbon-12.
Explanation:
The number of particles presents in one mole of a substance is known as Avogadro's number.
Avogadro's number is
atoms or molecules or ions or particles present in one mole of a substance. It is denoted by the symbol
or
. It is a dimensionless quantity.
Avogadro's number was proposed by Jean Perrin but named in the honor of italian scientist Amedeo Avogadro.
Avogadro's number is the number of atoms present in 12 grams of carbon-12.