To counter the removal of A the equilibrium change by <u>s</u><em>hifting toward the left</em>
<em> </em><u><em>explanation</em></u>
<u><em> </em></u>If the reaction is at equilibrium and we alter the condition a new equilibrium state is created
<u><em> </em></u>The removal of A led to the shift of equilibrium toward the left since it led to less molecules in reactant side which favor the backward reaction.( equilibrium shift to the left)
Answer:
110ml
Explanation:
<em>Using the dilution equation, C1V1 = C2V2</em>
<em>Where C1 is the initial concentration of solution</em>
<em>C2 is final concentration of solution</em>
<em>V1 is intital volume of solution</em>
<em>V2 is final volume of solution.</em>
From the question , C1=6M, C2=0.5M, V1=10ml, V2=?



volume of water added = final volume -initial volume
= 120-10
=110ml
Pure water does
not have enough ions to conduct electricity. A mixture of metals such as iron,
zinc and copper in the wet soil can trigger electrolysis that requires excess
energy in the form of over potential to conduct electricity. The excess energy
is needed due to limited self-ionization of water. The wet soil then can
conduct current when positive and negative ions are present. The water ions begin
to flow from anode (positive electrode) to cathode (negative electrode) to be oxidize
and produce electricity.
<span> </span>
So each 19.3g of gold is equivalent to one ml
So if we divide the mass of the gold nugget by the density we can find the volume: 93.5/19.3 = 4.79ml
Hope that helps