<h2>The answers are

and

</h2>
Explanation:
Given -
a) The molecular formula of ethylene glycol -

∴ The empirical formula of ethylene glycol will be -

Given -
b) The molecular formula of per-oxo-disulfuric acid (a compound used in bleaching agents) -

∴ The empirical formula of per-oxo-disulfuric acid will be -

Hence, the answers are
and
.
Answer:MnCO3+2H2O----->MnO2+ HCO3-+2e-+3H+
Explanation:The equation to be balanced is
MnCO3 ------> MnO2+HCO3-
The oxidation number of Mn changes from +2 in MnCO3 to +4 in MnO2
Therefore two electrons must be added to the right as shown below:
MnCO3 -------> MnO2+ HCO3-+ 2e-Now,there is one negative charge HCO3- and 1 negative charge on the two electrons making a total of -3 charges on the right. There is zero charge on the left.
To balance the equation,add3H+on the right,to cancel out the charges.
MnCO3 --------> MnO2+HCO3-+2e-+3H+
Adding H2O to balance Hydrogen and Oxygen atoms:
MnCO3+2H2O ------->MnO2+HCO3-+2e-+3H+
Answer:
molecular weight (Mb) = 0.42 g/mol
Explanation:
mass sample (solute) (wb) = 58.125 g
mass sln = 750.0 g = mass solute + mass solvent
∴ solute (b) unknown nonelectrolyte compound
∴ solvent (a): water
⇒ mb = mol solute/Kg solvent (nb/wa)
boiling point:
- ΔT = K*mb = 100.220°C ≅ 373.22 K
∴ K water = 1.86 K.Kg/mol
⇒ Mb = ? (molecular weight) (wb/nb)
⇒ mb = ΔT / K
⇒ mb = (373.22 K) / (1.86 K.Kg/mol)
⇒ mb = 200.656 mol/Kg
∴ mass solvent = 750.0 g - 58.125 g = 691.875 g = 0.692 Kg
moles solute:
⇒ nb = (200.656 mol/Kg)*(0.692 Kg) = 138.83 mol solute
molecular weight:
⇒ Mb = (58.125 g)/(138.83 mol) = 0.42 g/mol
Answer:
1) Conversion of glucose to glucose 6-phosphate by hexokinase
2) Conversion of fructose 6-phosphate to fructose 1,6-biphosphate by phosphofructokinase
3) Conversion of phosphoenolpyruvate to pyruvate by pyruvate kinase
Explanation:
There are 10 steps in the glycolysis pathway, three of which are irreversible. The enzymes controlling these reactions have not only catalytic properties but the irreversibility of the reaction gives them regulatory properties as well. These reactions serve as control points in the pathway.
Answer:
The answer to your question is: 1, 2, 1, 2
Explanation:
1 Fe(s) + 2 Na⁺(aq) → 1 Fe²⁺(aq) + 2 Na(s)
Fe⁰ - 2e⁻ ⇒ Fe⁺² Oxidases
Na⁺ + 1 e⁻ ⇒ Na⁰ Reduces
1 x ( 1 Fe⁰ ⇒ 1 Fe⁺²) Interchange number of
2 x ( 2Na⁺ ⇒ 2 Na⁰ ) electrons