Hey there!:
Molar mass Ca(NO2)2 = 132.089 g/mol
Mass of solute = 120 g
Number of moles:
n = mass of solute / molar mass
n = 120 / 132.089
n = 0.0009084 moles of Ca(NO2)2
Volume in liters of solution :
240 mL / 1000 => 0.24 L
Therefore:
Molarity = number of moles / volume of solution
Molarity = 0.0009084 / 0.24
Molarity = 0.003785 M
Hope that helps!
Answer:
4.86×10^23 molecule of Pb
Explanation:
Based on that equation, for every 2 moles of ammonia, you get 3 moles of lead.
So:
2 mol NH3/ 3 mol Pb
Using this ratio we can find the amounts of either molecule. Given 5.38 mol NH3:
(5.38 NH3)(3 Pb/ 2 NH3) = (5.38)(3/2) mol Pb = 8.07 mol Pb
Then, we just need to use Avagadro's number to get the number of molecules.
(8.07)(6.02×10^23) = 4.86×10^23 molecule of Pb
Answer:
Explanation:
The first law is An object won't move by itself, and once in motion, it won't stop unless some force acts upon it. With this being said when the trumpet is at his side and he is not holding it will not move not until he lets go of it.
The ideal gas equation is;
PV = nRT; therefore making P the subject we get;
P = nRT/V
The total number of moles is 0.125 + 0.125 = 0.250 moles
Temperature in kelvin = 273.15 + 18 = 291.15 K
PV = nRT
P = (0.250 × 0.0821 )× 291.15 K ÷ (7.50 L) = 0.796 atm
Thus, the pressure in the container will be 0.796 atm