Answer:
At end point there will a transition from pink to colorless.
Explanation:
As the student put the vinegar in the titrator and NaOH in the beaker, it means that he has poured phenolphthalein in the NaOH solution.
The pH range of phenolphthalein is 8.3-10 (approx), it means it will show pink color in basic medium.
So on addition of phenolphthalein in NaOH the solution will become pink in color.
When we start pouring vinegar from titrator neutralization of NaOH will begin.
On complete neutralization , on addition of single drop of vinegar the solution will become acidic and there will be complete disappearance of pink color solution in the beaker.
Answer:
THE MASS OF 7.68 *10^24 MOLECULES OF PHOSPHORUS TRICHLORIDE IS 1746.25 g.
Explanation:
Molar mass of PCl3 = ( 31 + 35.5 *3) = 137.5 g/mol
At 7.68 * 10^24 molecules, how many number of mole is present?
6.03 * 10^23 molecules = 1 mole
7.68*10^24 molecules = x mole
x mole = 7.68 *10^24 molecules/ 6.03 *10^23
x mole = 1.27 *10 moles
x mole = 12.7 moles
Using mole = mass / molar mass
mass = mole * molar mass
mass = 12.7 moles * 137.5 g/mol
mass = 1746.25 g
Hence, the mass of 7.68 *10^24 molecules is 1746.25 g
Answer:
3.3 mol
Explanation:
5.2 mol * 14.9 L / 23.5 L
The rate of Formation of Carbocation mainly depends on two factors'
1) Stability of Carbocation: The ease of formation of Carbocation mainly depends upon the ionization of substrate. If the forming carbocation id tertiary then it is more stable and hence readily formed as compared to secondary and primary.
2) Ease of detaching of Leaving Group: The more readily and easily the leaving group leaves the more readily the carbocation is formed and vice versa. In given scenario the carbocation formed is tertiary in all three cases, the difference comes in the leaving group. So, among these three substrates the one containing Iodo group will easily dissociate to form tertiary carbocation because due to its large size Iodine easily leaves the substrate, secondly Chlorine is a good leaving group compared to Fluoride. Hence the order of rate of formation of carbocation is,
R-I > R-Cl > R-F
B > C > A
Answer:
A Reaction
3. Pt(NO₃)₂(aq) + Cu(s)
4. Cr(s) + H₂SO₄(aq)
B Non Reaction
1. Mn(s) + Ca(NO₃)₂(aq)
2. KOH(aq) + Fe(s)
Y > Q > W > Z > X
Explanation:
The first question is whether a reaction will occur base on the chemical equation below.
1. Mn(s) + Ca(NO₃)₂(aq)
2. KOH(aq) + Fe(s)
3. Pt(NO₃)₂(aq) + Cu(s)
4. Cr(s) + H₂SO₄(aq)
Firstly, some element are more reactive than others , base on this criteria element can be arranged base on it reactivity .
1. Mn(s) + Ca(NO₃)₂(aq)
This reaction will not occur because Mn cannot displace Ca in it compound. Usually, more reactive element displaces less reactive element.
2. KOH(aq) + Fe(s)
The reaction will not occur since Iron is less reactive and lower in the reactivity series than potassium . So iron won't be able to displace potassium.
3. Pt(NO₃)₂(aq) + Cu(s)
Copper is more reactive than platinum so it will displace platinum easily . The reaction will definitely occur.
4. Cr(s) + H₂SO₄(aq)
Chromium is higher up in the reactivity series than hydrogen so, it will definitely displace hydrogen in it compound . The reaction will occur in this case.
Base on the reaction
Q + W+ Reaction occurs
Since the reaction occurred element Q is more reactive as it displace element w from it compound.
X + Z+ No reaction
No reaction occurred because element x is less reactive than z therefore, it cannot displace z from it compound.
W + Z+ Reaction occurs
Element w is more reactive than z as it displaces z form it compound.
Q+ + Y Reaction occurs
Element Y is more reactive than element Q as it displaces Q from it compound.
Therefore, the order of reactivity from the most reactive to the least reactive will be Y > Q > W > Z > X