Q1)
molarity is defined as the number of moles of solute in 1 L solution
the number of moles of LiNO₃ - 0.38 mol
volume of solution - 6.14 L
since molarity is number of moles in 1 L
number of moles in 6.14 L - 0.38 mol
therefore number of moles in 1 L - 0.38 mol / 6.14 L = 0.0619 mol/L
molarity of solution is 0.0619 M
Q2)
the mass of C₂H₆O in the solution is 72.8 g
molar mass of C₂H₆O is 46 g/mol
number of moles = mass present / molar mass of compound
the number of moles of C₂H₆O - 72.8 g / 46 g/mol
number of C₂H₆O moles - 1.58 mol
volume of solution - 2.34 L
number of moles in 2.34 L - 1.58 mol
therefore number of moles in 1 L - 1.58 mol / 2.34 L = 0.675 M
molarity of C₂H₆O is 0.675 M
Q3)
Mass of KI in solution - 12.87 x 10⁻³ g
molar mass - 166 g/mol
number of mole of KI = mass present / molar mass of KI
number of KI moles = 12.87 x 10⁻³ g / 166 g/mol = 0.0775 x 10⁻³ mol
volume of solution - 112.4 mL
number of moles of KI in 112.4 mL - 0.0775 x 10⁻³ mol
therefore number of moles in 1000 mL- 0.0775 x 10⁻³ mol / 112.4 mL x 1000 mL
molarity of KI - 6.90 x 10⁻⁴ M
-OH is elctron donating -C=-N is electron withdrawing -O-CO-CH3 is electron withdrawing -N(CH3)2 is electron donating -C(CH3)3 is electron donating -CO-O-CH3 is electron withdrawing -CH(CH3)2 is electron donating -NO2 is electrong withdrawing -CH2
The molarity is the number of moles in 1 L of the solution.
The mass of NH₃ given - 2.35 g
Molar mass of NH₃ - 17 g/mol
The number of NH₃ moles in 2.35 g - 2.35 g / 17 g/mol = 0.138 mol
The number of moles in 0.05 L solution - 0.138 mol
Therefore number of moles in 1 L - 0.138 mol / 0.05 L x 1L = 2.76 mol
Therefore molarity of NH₃ - 2.76 M
I'm certain it's "D"
...because it can't be "A" or "B" because solubility IS a property but to actually determine whether these two substances are the same or different we would need at least two-three properties (like boiling point or specific heat).
and it can't be "C" because the melting point is just simply irrelevant when comparing the solubility of two substances.
Answer:
Three of the five oxides are expected to form acidic solutions in water
Explanation:
We have different types of oxides : Acidic oxides, Basic oxides, Amphoteric oxides, Peroxides and Higher oxides.
Only acidic oxides will dissolve in water to give an acidic solution.
Considering the given oxides carefully,
- SO2 will dissolve in water to produce H2SO3 which is acidic.
- Y2O3 will dissolve in water to produce Yttrium(III) hydroxide which is basic.
- MgO will dissolve in water only to produce Mg(OH)2 which is also basic.
- Cl2O dichlorine mono oxide will dissolve in water to produce HClO which is acidic.
- N2O5 will dissolve in water to produce HNO3 which is also acidic.