Answer:
40% of the ammonia will take 4.97x10^-5 s to react.
Explanation:
The rate is equal to:
R = k*[NH3]*[HOCl] = 5.1x10^6 * [NH3] * 2x10^-3 = 10200 s^-1 * [NH3]
R = k´ * [NH3]
k´ = 10200 s^-1
Because k´ is the psuedo first-order rate constant, we have the following:
b/(b-x) = 100/(100-40) ; 40% ammonia reacts
b/(b-x) = 1.67
log(b/(b-x)) = log(1.67)
log(b/(b-x)) = 0.22
the time will equal to:
t = (2.303/k) * log(b/(b-x)) = (2.303/10200) * (0.22) = 4.97x10^-5 s
Mass of lead (II) chromate is 51 g. The molecular formula is
and its molar mass is 323.2 g/mol
Number of moles can be calculated using the following formula:

Here, m is mass and M is molar mass.
Putting the values,

Therefore, number of moles of lead (II) chromate will be 0.1578 mol.
Answer:
Q= 245 =2.5 * 10^2
Explanation:
ΔG = ΔGº + RTLnQ, so also ΔGº= - RTLnK
R= 8,314 J/molK, T=298K
ΔGº= - RTLnK = - 6659.3 J/mol = - 6.7 KJ/mol
ΔG = ΔGº + RTLnQ → -20.5KJ/mol = - 6.7 KJ/mol + 2.5KJ/mol* LnQ
→ 5.5 = LnQ → Q= 245 =2.5 * 10^2
This name is phosphine flammable , toxic gas colourless
...it's formula is PH3
The answer should be <span>enteropeptidase
</span>