Molarity is defined as the number of moles of solute in 1 L of solution
mass fo KCl in the solution is - 5.0 g
number of moles of KCl - 5.0 g/ 74.5 g/mol = 0.067 mol
number of moles of KCl in 100 mL - 0.067 mol
therefore number of KCl moles in 1 L - 0.067 / 100 mL x 1000 mL = 0.67 M
molarity of KCl is 0.67 M
Answer:
50 mm
4 ft
36 ft
250 cm
1 L
Explanation:
Centimeter to millimeter:
1 cm is equal to 10 mm.
5cm× 10 mm/1 cm
50 mm
Inches to feet conversion:
1 foot is equal to 12 inches.
48 inch × 1 feet /12 inch
4 feet
Yard to Feet conversion:
1 yard is equal to 3 feet.
12 yd × 3 ft / 1 yd
36 ft
Meter to centimeter:
One meter is equal to 100 cm.
2.5 m × 100 cm / 1m
250 cm
Milliliter to Liter:
One L is equal to 1000 mL.
1000 mL = 1 L
This is an incomplete question, the given sketch is shown below.
Answer : The name of given unit cell is, FCC (face-centered cubic unit cell)
Explanation :
Unit cell : It is defined as the smallest 3-dimensional portion of a complete space lattice which when repeated over the and again in different directions produces the complete space lattice.
There are three types of unit cell.
- SCC (simple-centered cubic unit cell)
- BCC (body-centered cubic unit cell)
- FCC (face-centered cubic unit cell)
In SCC, the atoms are arranged at the corners.

The number of atoms of unit cell = Z = 1
In BCC, the atoms are arranged at the corners and the body center.

The number of atoms of unit cell = Z = 2
The given unit cell is, FCC because the atoms are arranged at the corners and the center of the 6 faces.

The number of atoms of unit cell = Z = 4
Thus, the name of given unit cell is, FCC (face-centered cubic unit cell)
The greatest amount of energy released per gram of reactants occurs during a (1) redox reaction, although it should be noted that there are exceptions depending on environment.
Answer:
<h2>
The equilibrium constant Kc for this reaction is 19.4760</h2>
Explanation:
The volume of vessel used=
ml
Initial moles of NO=
moles
Initial moles of H2=
moles
Concentration of NO at equilibrium=
M

Moles of NO at equilibrium= 
=
moles
2H2 (g) + 2NO(g) <—> 2H2O (g) + N2 (g)
<u>Initial</u> :1.3*10^-2 2.6*10^-2 0 0 moles
<u>Equilibrium</u>:1.3*10^-2 - x 2.6*10^-2-x x x/2 moles
∴
⇒
![Kc=\frac{[H2O]^2[N2]}{[H2]^2[NO]^2} (volume of vesselin litre)](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BH2O%5D%5E2%5BN2%5D%7D%7B%5BH2%5D%5E2%5BNO%5D%5E2%7D%20%28volume%20of%20vesselin%20litre%29)
<u>Equilibrium</u>:0.31*10^-2 1.61*10^-2 0.99*10^-2 0.495*10^-2 moles
⇒
⇒