Answer:
We need 78.9 mL of the 19.0 M NaOH solution
Explanation:
Step 1: Data given
Molarity of the original NaOH solution = 19.0 M
Molarity of the NaOH solution we want to prepare = 3.0 M
Volume of the NaOH solution we want to prepare = 500 mL = 0.500 L
Step 2: Calculate volume of the 19.0 M NaOH solution needed
C1*V1 = C2*V2
⇒with C1 = the concentration of the original NaOH solution = 19.0 M
⇒with V1 = the volume of the original NaOH solution = TO BE DETERMINED
⇒with C2 = the concentration of the NaOH solution we want to prepare = 3.0 M
⇒with V2 = the volume of the NaOH solution we want to prepare = 500 mL = 0.500 L
19.0 M * V2 = 3.0 M * 0.500 L
V2 = (3.0 M * 0.500L) / 19.0 M
V2 = 0.0789 L
We need 0.0789 L
This is 0.0789 * 10^3 mL = 78.9 mL
We need 78.9 mL of the 19.0 M NaOH solution
Answer:
The essence including its particular subject is outlined in the following portion mostly on clarification.
Explanation:
- The energy throughout the campfire comes from either the wood's latent chemical energy until it has been burned to steam up and launch up across the campfire. The electricity generation for something like a campfire seems to be in the context including its potential chemical energy which is contained throughout the firewood used only to inflame the situation.
- The energy output seems to be in the different types of heat energy radiating across the campfire, laser light generated off by the blaze, and perhaps a little number of electrical waves, registered throughout the firewood cracking whilst they combust throughout the blaze.
and,
chemical energy ⇒ heat energy + light energy + sound energy
Smaller atoms ; free neutrons and energy
Your answer is D. Since there is little to no magnetic field to wire, if it is copper which most wires are, there will be no voltage in a wire.