Answer:
Atomic number = 10
Mass number = 20
Explanation:
Mass number = neutrons+protons
Mass number = 10+10 = 20
Answer:
Here's what I get.
Explanation:
The frequency of a vibration depends on the strength of the bond (the force constant).
The stronger the bond, the more energy is needed for the vibration, so the frequency (f) and the wavenumber increase.
Acetophenone
Resonance interactions with the aromatic ring give the C=O bond in acetophenone a mix of single- and double-bond character, and the bond frequency = 1685 cm⁻¹.
p-Aminoacetophenone
The +R effect of the amino group increases the single-bond character of the C=O bond. The bond lengthens, so it becomes weaker.
The vibrational energy decreases, so wavenumber decreases to 1652 cm⁻¹.
p-Nitroacetophenone
The nitro group puts a partial positive charge on C-1. The -I effect withdraws electrons from the acetyl group.
As electron density moves toward C-1, the double bond character of the C=O group increases.
The bond length decreases, so the bond becomes stronger, and wavenumber increases to 1693 cm¹.
The first step in the reaction is the double bond of the Alkene going after the H of HBr. This protonates the Alkene via Markovnikov's rule, and forms a carbocation. The stability of this carbocation dictates the rate of the reaction.
<span>So to solve your problem, protonate all your Alkenes following Markovnikov's rule, and then compare the relative stability of your resulting carbocations. Tertiary is more stable than secondary, so an Alkene that produces a tertiary carbocation reacts faster than an Alkene that produces a secondary carbocation.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
<span>We can use
the heat equation,
Q = mcΔT </span>
<span>Where Q is
the amount of energy transferred (J), m is the mass of the substance
(kg), c is
the specific heat (J g</span>⁻¹ °C⁻<span>¹) and ΔT is
the temperature difference (°C).</span>
Let's assume that the finale temperature is T.
Q = 1200 J
<span>
m = 36 g
c = 4.186 J/g °C</span>
ΔT = (T -
22)
By applying
the formula,
1200 J = 36 g
x 4.186 J/g °C x (T - 22)
(T - 22) = 1200 J / (36 g x 4.186 J/g °C)
(T - 22) = 7.96 °C
T = (7.96 + 22) °C = 29.96 °C
T = 30 °C
Hence,
the final temperature is 30 °C.
The average mass of an atom is calculated with the formula:
average mass = abundance of isotope (1) × mass of isotope (1) + abundance of isotope (2) × mass of isotope (2) + ... an so on
For the boron we have two isotopes, so the formula will become:
average mass of boron = abundance of isotope (1) × mass of isotope (1) + abundance of isotope (2) × mass of isotope (2)
We plug in the values:
10.81 = 0.1980 × 10.012938 + 0.8020 × mass of isotope (2)
10.81 = 1.98 + 0.8020 × mass of isotope (2)
10.81 - 1.98 = 0.8020 × mass of isotope (2)
8.83 = 0.8020 × mass of isotope (2)
mass of isotope (2) = 8.83 / 0.8020
mass of isotope (2) = 11.009975
mass of isotope (1) = 10.012938 (given by the question)