answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natasha_Volkova [10]
2 years ago
13

In a few sentences, describe the molecular polarity and the intermolecular forces present in ammonium lauryl sulfate.

Chemistry
1 answer:
Sergio [31]2 years ago
7 0

Answer:

A polar molecule is a molecule in which one end of the molecule is slightly positive, while the other end is slightly negative. A diatomic molecule that consists of a polar covalent bond, such as HF, is a polar molecule. The two electrically charged regions on either end of the molecule are called poles, similar to a magnet having a north and a south pole. A molecule with two poles is called a dipole. Hydrogen fluoride is a dipole. A simplified way to depict polar molecules is pictured below When placed between oppositely charged plates, polar molecules orient themselves so that their positive ends are closer to the negative plate and their negative ends are closer to the positive plate

Experimental techniques involving electric fields can be used to determine if a certain substance is composed of polar molecules and to measure the degree of polarity.

For molecules with more than two atoms, the molecular geometry must also be taken into account when determining if the molecule is polar or nonpolar. is a comparison between carbon dioxide and water. Carbon dioxide (CO2) is a linear molecule. The oxygen atoms are more electronegative than the carbon atom, so there are two individual dipoles pointing outward from the C atom to each O atom. However, since the dipoles are of equal strength and are oriented in this way, they cancel each other out, and the overall molecular polarity of CO2 is zero.

Water is a bent molecule because of the two lone pairs on the central oxygen atom. The individual dipoles point from the H atoms toward the O atom. Because of the shape, the dipoles do not cancel each other out, and the water molecule is polar. In the figure, the net dipole is shown in blue and points upward.

Some other molecules are shown below (Figure below). Notice that a tetrahedral molecule such as CH4 is nonpolar. However, if one of the peripheral H atoms is replaced by another atom that has a different electronegativity, the molecule becomes polar. A trigonal planar molecule (BF3) may be nonpolar if all three peripheral atoms are the same, but a trigonal pyramidal molecule (NH3) is polar.

You might be interested in
Calculate ΔH and ΔStot when two copper blocks, each of mass 10.0 kg, one at 100°C and the other at 0°C, are placed in contact in
ira [324]

Explanation:

The given data is as follows.

        m = 10.0 kg = 10,000 g    (as 1 kg = 1000 g)

      Initial temp. of block 1, T_{1} = 100^{o}C = (100 + 273) K = 373 K  

      Initial temp. of block 2, T_{2} = 0^{o}C = (0 + 273) K = 273 K

So, heat released by block 1 = heat gained by block 2

            mC \Delta T = mC \times \Delta T

  10000 g \times 0.385 \times (T_{f} - 100)^{o}C = 10000 g \times 0.385 \times (0 - T_{f})^{o}C

                  T_{f} - 100^{o}C = 0^{o}C - T_{f}    

                   2T_{f} = 100^{o}C

                          T_{f} = 50^{o}C

Convert temperature into kelvin as (50 + 273) K = 323 K.              

Also, we know that the relation between enthalpy and temperature change is as follows.

             \Delta H = mC \Delta T

                         = 10000 g \times 0.385 J/K g \times 323 K

                         = 1243550 J

or,                     = 1243.5 kJ

Now, calculate entropy change for block 1 as follows.

     \Delta S_{1} = mC ln \frac{T_{f}}{T_{i}}

            = 10000 g \times 0.385 J/K g \times ln \frac{323}{373}

            = 10000 g \times 0.385 J/K g \times -0.143

            = -554.12 J/K

Now, entropy change for block 2 is as follows.

   \Delta S_{2} = mC ln \frac{T_{f}}{T_{i}}

           = 10000 g \times 0.385 J/K g \times ln \frac{323}{273}

           = 10000 g \times 0.385 J/K g \times 0.168

           = 647.49 J/K

Hence, total entropy will be sum of entropy change of both the blocks.

            \Delta S_{total} = \Delta S_{1} + \Delta S_{2}

                       = -554.12 J/K + 647.49 J/K

                       = 93.37 J/K

Thus, we can conclude that for the given reaction \Delta H is 1243.5 kJ and \Delta S_{total} is 93.37 J/K.

6 0
2 years ago
Write the electron configurations for the following ions:
Ket [755]

Answer:

Co²⁺ : 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁷

Sn²⁺ : 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰

Zr⁴⁺ : 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶

Ag⁺ : 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 4d¹⁰

S²⁻ : 1s² 2s² 2p⁶ 3s² 3p⁶

Explanation:

Cobalt (Co): atomic number 27

<u>The electronic configuration of Co in ground state: </u>

1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁷

<u>The electronic configuration of Co in +2 oxidation state (Co²⁺) :</u>

1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁷

Tin (Sn): atomic number 50

<u>The electronic configuration of Sn in ground state: </u>

1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p²

<u>The electronic configuration of Sn in +2 oxidation state (Sn²⁺) </u>:

1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰

Zirconium (Zr): atomic number 40

<u>The electronic configuration of Zr in ground state:</u>

1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d²

<u>The electronic configuration of Zr in +4 oxidation state (Zr⁴⁺) :</u>

1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶

Silver (Ag): atomic number 47

<u>The electronic configuration of Ag in ground state:</u>

1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s¹ 4d¹⁰

<u>The electronic configuration of Ag in +1 oxidation state (Ag⁺) :</u>

1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 4d¹⁰

Sulphur (S): atomic number 16

<u>The electronic configuration of S in ground state:</u>

1s² 2s² 2p⁶ 3s² 3p⁴

<u>The electronic configuration of S in -2 oxidation state (S²⁻) :</u>

1s² 2s² 2p⁶ 3s² 3p⁶

8 0
2 years ago
Read 2 more answers
A mass of 5.4 grams of aluminum (al) reacts with an excess of copper (ii) chloride (cucl2) in solution, as shown below. 3cucl2 2
horrorfan [7]

Answer:

Mass of copper produced is 19.07g

Explanation:

Let's bring out the chemical equation;

3CuCl2 + 2Al → 2AlCl3 + 3Cu

3           :   2       :   2       : 3

Upon confirming that the reaction is indeed balanced, we can proceed.

The questions asks to calculate mass of Cu formed when a mass of 5.4g of Al is being used.

From the equation, what is the relationship between Al and Cu?

2 mol of Al would react to form 3 mol of Cu

Expressing this in terms of mass, we have;

mass = no. of moles * molar mass

Mass of Aluminium = 2 * 26.98 = 53.98 g

Mass of Copper = 3 * 63.546 = 190.638g

This means;

53.98 g of Al would react to form 190.638g of Cu

So how much Cu would form from 5.4 g of Al?

This leads us to;

53.98 = 190.638

5.4 = x

Upon cross multiplication, we are left with;

x = (190.638 * 5.4) / 53.98

x = 19.07 g

Mass of copper produced is 19.07g

8 0
2 years ago
A 0.500 g sample of tin (Sn) is reacted with oxygen to give 0.534 g of product. What is the empirical formula of the oxide?
REY [17]

Answer:

Sn_2O

Explanation:

Hello,

In this case, given that the mass of the product is 0.534 g, we can infer that the percent composition of tin is:

\%Sn=\frac{0.500g}{0.534g}*100\%\\ \\\%Sn=93.6\%

Therefore, the percent composition of oxygen is 6.4% for a 100% in total. Thus, with such percents we compute the moles of each element in the oxide:

n_{Sn}=93.6gSn*\frac{1molSn}{118.8gSn} =0.788molSn\\\\n_O=6.4gO*\frac{1molO}{16gO}=0.4molO

In such a way, for finding the smallest whole number we divide the moles of both tin and oxygen by the moles of oxygen as the smallest moles:

Sn:\frac{0.788}{0.4}=2\\ \\O:\frac{0.4}{0.4}=1

Therefore, the empirical formula is:

Sn_2O

Best regards.

8 0
2 years ago
Acetaminophen (pictured) is a popular nonaspirin, "over-the-counter" pain reliever. what is the mass % (calculate to 4 significa
77julia77 [94]

Acetaminophen as a chemical formula of C8H9NO2. The molar masses are:

C8H9NO2 = 151.163 g/mol

C = 12 g/mol

H = 1 g/mol

N = 14 g/mol

O = 16 g/mol

 

<span>TO get the mass percent, simply multiply the molar mass of each elements  with the number of the element divide by the molar mass of acetaminophen, that is:</span>

%C = [(12 * 8) / 151.163] * 100% = 63.50%

%H = [(1 * 9) / 151.163] * 100% = 5.954%

%N = [(14 * 1) / 151.163] * 100% = 9.262%

<span>%O = [(16 * 2) / 151.163] * 100% = 21.17% </span>

8 0
2 years ago
Other questions:
  • How can chemistry help you make wiser decisions and be a better consumer?
    6·1 answer
  • A box contains equal amounts of helium, argon, and krypton (all gases) at 25 ∘c. part a consider the temperatures, masses, avera
    8·2 answers
  • Consider the two electron arrangements for neutral atoms A and B. What is the difference between atom A and atom B? A - 1s2, 2s2
    11·2 answers
  • Which best describes heat?
    7·2 answers
  • When 21.45 g of KNO3 was dissolved in water in a calorimeter, the temperature fell from 25.00°C to 14.14 °C. If the heat capacit
    7·1 answer
  • Enter the correct answer for each unit conversion.
    8·2 answers
  • Choose the substance with the lowest surface tension. Choose the substance with the lowest surface tension. a) H2O b) (CH3)2CO c
    14·1 answer
  • The above shows a balloon full of gas which has a volume of 120.0 mL
    9·1 answer
  • Give two examples (i.e. list 2 elements that are examples) of: a. an atom with a half-filled subshell b. an atom with a complete
    13·1 answer
  • Observation: I am in the lab timing how long it takes to boil 100 mL of water in a beaker over a Bunsen burner. I observe it tak
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!