Answer:
According to <em>collision theory, to preventing a dangerous reaction from occurring</em>, <em>the best is to </em><em>keep reactants in separate containers</em> (last statement).
Justification:
<em>Collison theory</em> states that the the reactant substances (atoms, ions or molecules) must first collide to react and form the products.
Additionally, to form the products, the collisions must meet two requirements:
- the reactant substances must collide with the correct orientation, and
- the reactant substances must collide with energy enough to form the activated complex (transition state).
Hence, the <em>collision theory</em> permits you <em>preventing a dangerous reaction from occurring</em>, by using the elemental knowledge that the substances must first collide in order to they react, and so the most effective way is to keep the reactants in separate contaners, preventing the reactants from coming into direct contact.
Answer:
B 1.23 g/cc
Explanation:
For something to float on seawater, the density must be less than 1.03 g/mL. If the object sinks, the density is greater than 1.03 g/mL.
Let’s examine the answer choices. Keep in mind, the ice berg is mostly below the water level.
A. 0.88 g/cc
This is less than 1.03 g/cc, which would result in floating.
B. 1.23 g/cc
This is the best answer choice. The iceberg is mostly beneath the water, but some of it is exposed. The density is greater than 1.03 g/mL, but not so much greater that it would immediately sink.
C. 0.23 g/cc
This is less than 1.03 g/cc, which would produce floating.
D. 4.14 g/cc
This is much greater than 1.03 g/cc and the result would be sinking.
Answer:
Altogether for both models; two red jellybeans, two white jellybeans, two black jellybeans and six blue jellybeans.
<em>Note: Since no specific color was stated for oxygen atoms, the answer assigns blue colored jellybeans to represent oxygen atoms.J</em>
Explanation:
Sodium bicarbonate, NaHCO₃ is a compound composed of one atom of sodium, one atom of hydrogen, one atom of carbon and three atoms of oxygen.
Since red jellybeans represent sodium atoms, white jellybeans represent hydrogen atoms, black jellybeans represent carbon atoms and blue jellybeans represent oxygen atoms, each of the two students will require the following number of each jellybean for their model of sodium carbonate: One red jellybean, one white jellybean, one black jellybean and three blue jellybeans.
Altogether for both models; two red jellybeans, two white jellybeans, two black jellybeans and six blue jellybeans.
Q1)
molarity is defined as the number of moles of solute in 1 L solution
the number of moles of LiNO₃ - 0.38 mol
volume of solution - 6.14 L
since molarity is number of moles in 1 L
number of moles in 6.14 L - 0.38 mol
therefore number of moles in 1 L - 0.38 mol / 6.14 L = 0.0619 mol/L
molarity of solution is 0.0619 M
Q2)
the mass of C₂H₆O in the solution is 72.8 g
molar mass of C₂H₆O is 46 g/mol
number of moles = mass present / molar mass of compound
the number of moles of C₂H₆O - 72.8 g / 46 g/mol
number of C₂H₆O moles - 1.58 mol
volume of solution - 2.34 L
number of moles in 2.34 L - 1.58 mol
therefore number of moles in 1 L - 1.58 mol / 2.34 L = 0.675 M
molarity of C₂H₆O is 0.675 M
Q3)
Mass of KI in solution - 12.87 x 10⁻³ g
molar mass - 166 g/mol
number of mole of KI = mass present / molar mass of KI
number of KI moles = 12.87 x 10⁻³ g / 166 g/mol = 0.0775 x 10⁻³ mol
volume of solution - 112.4 mL
number of moles of KI in 112.4 mL - 0.0775 x 10⁻³ mol
therefore number of moles in 1000 mL- 0.0775 x 10⁻³ mol / 112.4 mL x 1000 mL
molarity of KI - 6.90 x 10⁻⁴ M
Answer:
usually the perfumes are made of aromatic hydrocarbons invloving
cetone, ethanol, benzaldehyde, formaldehyde, limonene, methylene chloride, camphor, ethyl acetate, linalool and benzyl alcohol. which have density lower than the water hence they will float on the top of the water.
Hope this helps you
Explanation: