Answer : The pressure in the flask after reaction complete is, 2.4 atm
Explanation :
To calculate the pressure in the flask after reaction is complete we are using ideal gas equation.

where,
P = final pressure in the flask = ?
R = gas constant = 0.0821 L.atm/mol.K
T = temperature = 
V = volume = 4.0 L
= moles of
= 0.20 mol
= moles of
= 0.20 mol
Now put all the given values in the above expression, we get:


Thus, the pressure in the flask after reaction complete is, 2.4 atm
The middle carbon is 4-degree since it is attached to 4 carbons. All other carbons are 1-degree since they are attached to only 1 carbon.
Hydrogens attached with 1-degree carbon are all same. Hydrogen are often refereed to as protons. No carbon is attached to 4-degree carbon. So all hydrogens in this structure are same.
This structure is called
NeoPentane
Answer:
1.8 × 10⁻¹⁶ mol
Explanation:
(a) Calculate the solubility of the Sr₃(PO₄)₂
Let s = the solubility of Sr₃(PO₄)₂.
The equation for the equilibrium is
Sr₃(PO₄)₂(s) ⇌ 3Sr²⁺(aq) + 2PO₄³⁻(aq); Ksp = 1.0 × 10⁻³¹
1.2 + 3s 2s
![K_{sp} =\text{[Sr$^{2+}$]$^{3}$[PO$_{4}^{3-}$]$^{2}$} = (1.2 + 3s)^{3}\times (2s)^{2} = 1.0 \times 10^{-31}\\\text{Assume } 3s \ll 1.2\\1.2^{3} \times 4s^{2} = 1.0 \times 10^{-31}\\6.91s^{2} = 1.0 \times 10^{-31}\\s^{2} = \dfrac{1.0 \times 10^{-31}}{6.91} = 1.45 \times 10^{-32}\\\\s = \sqrt{ 1.45 \times 10^{-32}} = 1.20 \times 10^{-16} \text{ mol/L}\\](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BSr%24%5E%7B2%2B%7D%24%5D%24%5E%7B3%7D%24%5BPO%24_%7B4%7D%5E%7B3-%7D%24%5D%24%5E%7B2%7D%24%7D%20%3D%20%281.2%20%2B%203s%29%5E%7B3%7D%5Ctimes%20%282s%29%5E%7B2%7D%20%3D%20%201.0%20%5Ctimes%2010%5E%7B-31%7D%5C%5C%5Ctext%7BAssume%20%7D%203s%20%5Cll%201.2%5C%5C1.2%5E%7B3%7D%20%5Ctimes%204s%5E%7B2%7D%20%3D%201.0%20%5Ctimes%2010%5E%7B-31%7D%5C%5C6.91s%5E%7B2%7D%20%3D%201.0%20%5Ctimes%2010%5E%7B-31%7D%5C%5Cs%5E%7B2%7D%20%3D%20%5Cdfrac%7B1.0%20%5Ctimes%2010%5E%7B-31%7D%7D%7B6.91%7D%20%3D%201.45%20%5Ctimes%2010%5E%7B-32%7D%5C%5C%5C%5Cs%20%3D%20%5Csqrt%7B%201.45%20%5Ctimes%2010%5E%7B-32%7D%7D%20%3D%201.20%20%5Ctimes%2010%5E%7B-16%7D%20%5Ctext%7B%20mol%2FL%7D%5C%5C)
(b) Concentration of PO₄³⁻
[PO₄³⁻] = 2s = 2 × 1.20× 10⁻¹⁶ mol·L⁻¹ = 2.41× 10⁻¹⁶ mol·L⁻¹
(c) Moles of PO₄³⁻
Moles = 0.750 L × 2.41 × 10⁻¹⁶ mol·L⁻¹ = 1.8 × 10⁻¹⁶ mol
Answer:
Drug calculation
If we have 45g of clobetasol = 0.05%w/w
Then what mass in g of clobetasol is in 0.03%w/w = 45 x 0.03/0.05 =27g
It means that 27g of clobetasol must be added to change the drug strength to 0.03% w/w
Answer:
Ka = [H₃O⁺] [SO₃²⁻] / [HSO₃⁻]
Kb = [OH⁻] [H₂SO₃] / [HSO₃⁻]
Explanation:
An amphoteric substance as HSO₃⁻ is a substance that act as either an acid or a base. When acid:
HSO₃⁻(aq) + H₂O(l) ⇄ H₃O⁺(aq) + SO₃²⁻(aq)
And Ka, the acid dissociation constant is:
<h3>Ka = [H₃O⁺] [SO₃²⁻] / [HSO₃⁻]</h3><h3 />
When base:
HSO₃⁻(aq) + H₂O(l) ⇄ OH⁻(aq) + H₂SO₃(aq)
And kb, base dissociation constant is:
<h3>Kb = [OH⁻] [H₂SO₃] / [HSO₃⁻]</h3>