Question:
The question is incomplete. What is required to calculate was not added.The equilibrium data was not also added. Below is the additional questions and the answers.
1. Calculate the minimum solvent that can be used.
2.Using a solvent rate of 1.5 times the minimum, calculate the number of
theoretical stages.
Answer:
1. Minimum solvent = 411.047
2. N = 5
Explanation:
See the attached files for explanations.
Answer:
6.7 x 10²⁶molecules
Explanation:
Given parameters
Mass of CO₂ = 4.9kg = 4900g
Unknown:
Number of molecules = ?
Solution:
To find the number of molecules, we need to find the number of moles first.
Number of moles = 
Molar mass of CO₂ = 12 + 2(16) = 44g/mol
Number of moles =
= 111.36mole
A mole of substance is the quantity of substance that contains the avogadro's number of particles.
1 mole = 6.02 x 10²³molecules
111.36 moles = 111.36 x 6.02 x 10²³molecules = 6.7 x 10²⁶molecules
ANSWER: B. 20 grams since no matter was added or removed
Hope it helps!
Answer:
25.99mL is the volume internal volume of the flask
Explanation:
<em>To complete the question:</em>
<em>The temperature of the water was measured to be 21ºC. Use this data to find the internal volume of the stoppered flask</em>
<em />
The flask was filled with water, that means the internal volume of the flask is equal to the volume that the water occupies.
To find the volume of the water you need to find the mass and by the use of density of water at 21ºC (0.997992g/mL), you can find the volume of the flask, thus:
Mass water = Mass filled flask - Mass of clean flask
Mass water = 60.167g - 34.232g
Mass water = 25.935g of water.
To convert this mass to volume:
25.935g × (1mL / 0.997992g) =
<h3>25.99mL is the volume internal volume of the flask</h3>
Answer: (3) 15
Explanation: We criss-cross down the oxidation numbers to get the subscripts for the correct formulas. That means the X has an oxidation number of 5. The element with the + oxidation number is always written first so it is +5. Of the groups names, only group 15 has +5 as an oxidation number.