<span>I would measure the mass of the solid substance. I would prepare a known mass of room temperature water large enough to submerge the solid substance in question. I would place the water in an insulated container. Then I would heat the solid substance to a known temperature. I would measure the temperature of the heated sample and the water. Then I would submerge the sample in the water and allow the sample and the water to reach the same temperature. I would measure this equilibrium temperature.
I would interpret the difference in temperature between the heated sample and the equilibrium temperature as the change in temperature in the sample. Given the known mass, the beginning temperature of the water, and the equilibrium temperature I can determine how much energy was transferred from the heated sample to the water.
Now the mass of the sample, a change in temperature in the solid substance, and the amount of energy transferred to create the temperature is known. This is sufficient to determine the specific heat of the solid substance</span>
The question is incomplete, here is the complete question:
A student sets up the following equation to convert a measurement. (The stands for a number the student is going to calculate.) Fill in the missing part of this equation.

<u>Answer:</u> The measurement after converting is 
<u>Explanation:</u>
We are given:
A quantity having value 
To convert this into
, we need to use the conversion factors:
1 kPa = 1000 Pa

Converting the quantity into
, we get:

Hence, the measurement after converting is 
Na⁺,SO₄²⁻ is the answer
<h3>Further explanation
</h3>
An ion is an atom or molecule that has a net electrical charge. There are many ions, one of them are sodium ion and sulfate ion.
SO₄²⁻ or Sulfate is a naturally occurring polyatomic ion that consist of a central sulfur atom surrounded by four oxygen atoms with occured widely in everyday life. Sodium ions are important for regulation of blood and body fluids, transmission of nerve impulses, heart activity, and certain metabolic functions.
Whereas Na⁺ or Sodium is a chemical element with the symbol Na and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sulfate ion is a very weak base. Therefore sulfate ion undergoes negligible hydrolysis in aqueous solution.
Enter the symbol of a sodium ion, Na⁺, followed by the formula of a sulfate ion, SO₄²⁻. Separate the ions with a comma only—spaces are not allowed. Express your answers as ions separated by a comma. Therefore the answer is: Na⁺,SO₄²⁻
Hope it helps!
<h3>Learn more</h3>
- Learn more about sodium ion brainly.com/question/6839866
- Learn more about sulfate ion brainly.com/question/2763823
- Learn more about ions brainly.com/question/11852357
<h3>Answer details</h3>
Grade: 9
Subject: Chemistry
Chapter: Introduction to Mastering Chemistry
Keywords: sodium ion, sulfate ion, ions, Chemistry, symbol
We are given that the balanced chemical reaction is:
cacl2⋅2h2o(aq) +
k2c2o4⋅h2o(aq) --->
cac2o4⋅h2o(s) +
2kcl(aq) + 2h2o(l)
We known that
the product was oven dried, therefore the mass of 0.333 g pertains only to that
of the substance cac2o4⋅h2o(s). So what we will do first is to convert this
into moles by dividing the mass with the molar mass. The molar mass of cac2o4⋅h2o(s) is
molar mass of cac2o4 plus the
molar mass of h2o.
molar mass cac2o4⋅h2o(s) = 128.10
+ 18 = 146.10 g /mole
moles cac2o4⋅h2o(s) =
0.333 / 146.10 = 2.28 x 10^-3 moles
Looking at
the balanced chemical reaction, the ratio of cac2o4⋅h2o(s) and k2c2o4⋅h2o(aq) is
1:1, therefore:
moles k2c2o4⋅h2o(aq) = 2.28
x 10^-3 moles
Converting
this to mass:
mass k2c2o4⋅h2o(aq) = 2.28
x 10^-3 moles (184.24 g /mol) = 0.419931006 g
Therefore:
The mass of k2c2o4⋅<span>h2o(aq) in
the salt mixture is about 0.420 g</span>
Answer : The expected coordination number of NaBr is, 6.
Explanation :
Cation-anion radius ratio : It is defined as the ratio of the ionic radius of the cation to the ionic radius of the anion in a cation-anion compound.
This is represented by,

When the radius ratio is greater than 0.155, then the compound will be stable.
Now we have to determine the radius ration for NaBr.
Given:
Radius of cation,
= 102 pm
Radius of cation,
= 196 pm

As per question, the radius of cation-anion ratio is between 0.414-0.732. So, the coordination number of NaBr will be, 6.
The relation between radius ratio and coordination number are shown below.
Therefore, the expected coordination number of NaBr is, 6.