Answer:
a. The original temperature of the gas is 2743K.
b. 20atm.
Explanation:
a. As a result of the gas laws, you can know that the temperature is inversely proportional to moles of a gas when pressure and volume remains constant. The equation could be:
T₁n₁ = T₂n₂
<em>Where T is absolute temperature and n amount of gas at 1, initial state and 2, final states.</em>
<em />
<em>Replacing with values of the problem:</em>
T₁n₁ = T₂n₂
X*7.1g = (X+300)*6.4g
7.1X = 6.4X + 1920
0.7X = 1920
X = 2743K
<h3>The original temperature of the gas is 2743K</h3><h3 />
b. Using general gas law:
PV = nRT
<em>Where P is pressure (Our unknown)</em>
<em>V is volume = 2.24L</em>
<em>n are moles of gas (7.1g / 35.45g/mol = 0.20 moles)</em>
R is gas constant = 0.082atmL/molK
And T is absolute temperature (2743K)
P*2.24L = 0.20mol*0.082atmL/molK*2743K
<h3>P = 20atm</h3>
<em />
Answer:
It sounds like they are studying French phonemes
Explanations:
I just learned this.
0.53 x 200ml = 106 ml of the pH 9.0 buffer + 94 ml of the pH 10 buffer gives the desired solution
<span> </span>
Answer:
b) 0.47
Explanation:
MwC5H12 = 72.15g/mol
⇒mol C5H12 = (10.0)*(mol/72.15)=0.1386molC5H12
MwC6H14=86.18g/mol
⇒molC6H14=(20.0)*(mol/86.18)=0,232
MwC6H6=78.11g/mol
⇒molC6H6=(10.0)*(mol/78.11)=0.128molC6H6
<h3>XC6H14=(0.232)/(0.1386+0.232+0,128)=0.465≅0.47</h3>