The correct answer is B. H2SO4 + B(OH)3 B2(SO4)3 + H2O
Hope this helps!
Answer:
c) 22
Explanation:
Let's consider the following balanced equation.
N₂(g) + 3 H₂(g) ----> 2 NH₃(l)
According to the balanced equation, 34.0 g of NH₃ are produced by 1 mol of N₂. For 170 g of NH₃:

According to the balanced equation, 34.0 g of NH₃ are produced by 3 moles of H₂. For 170 g of NH₃:

The total gaseous moles before the reaction were 5.00 mol + 15.0 mol = 20.0 mol.
We can calculate the pressure (P) using the ideal gas equation.
P.V = n.R.T
where
V is the volume (50.0 L)
n is the number of moles (20.0 mol)
R is the ideal gas constant (0.08206atm.L/mol.K)
T is the absolute temperature (400.0 + 273.15 = 673.2K)

Answer:
See explanation below
Explanation:
What we have to consider is the hybridation of the three carbon atoms we are asked in this question .
Hybridization # bonds Angle
sp³ 4 109.5º
sp² 3 + 1 pi bond 120º
sp 2 + 2 pi bonds 180º
Carbon atom (a) is bonded to two atoms: Carbon (b) and one Hydrogen. It has a triple bond to Carbon (b). Therefore its hybridization is sp with two pi bonds, and for sp hybridization we know the angle is 180 º.
The same hybridization sp happens to carbon (b) bonded to Carbon (c) and C(a) using one sp bond to Carbon (a) and 2 pi bonds; it is also bonded using the other sp to Carbon (c). The angle is therefore 180 between Carbons b and c.
Carbon C is bonded to 4 atoms, therefore, its hybridization is sp³ and the angles with these 4 atoms will be 109.5 º tehedral ( one bond to OH, one to C(b), and 2 to H ) .
Answer:
D.
The concentration of reactants and the concentration of products are constant.
Explanation:
pls mark as brainliest