Answer:
The boiling point decreases as the volume decreases.
Explanation:
The Temperature - Volume law otherwise called as Charles law is applied, which says that the volume of the given gas at constant pressure is directly proportional to the temperature measured in Kelvin. As the volume increases, the temperature also increases, if the volume decreases, then the temperature also decreases.
As per the Charles law, here the volume is decreased from 50 ml to 25 ml so the boiling point also decreases.
Answer:
Dust and smoke.
Explanation:
Dust and smoke are two different particles present in the air. Dust and smoke are different from one another due to their origin. Smoke formed from burning of materials while dust refers to the soil particles lifted by the wind due to their light weight. Dust and smoke are similar to each other due to their small in size, infinite number means uncountable and light weight.
The roots could no longer access depleted groundwater.
The topsoil in the area eroded.
<span>0.127 moles
The formula for nitroglycerin is C3H5N3O9 so let's first calculate the molar mass of it.
Carbon = 12.0107
Nitrogen = 14.0067
Hydrogen = 1.00794
Oxygen = 15.999
C3H5N3O9 = 3 * 12.0107 + 5 * 1.00794 + 3 * 14.0067 + 9 * 15.999 = 227.0829
Now calculate the number of moles of nitroglycerin you have by dividing the mass by the molar mass
2.50 ml * 1.592 g/ml / 227.0829 g/mol = 0.017527 mol
The balanced formula for when nitroglycerin explodes is
4 C3H5N3O9 => 12 CO2 + 10 H2O + O2 + 6 N2
Since all of the products are gasses at the time of the explosion, there is a total of 29 moles of gas produced for every 4 moles of nitroglycerin
Now multiply the number of moles of nitroglycerin by 29/4
0.017527 mol * 29/4 = 0.12707075 moles
Round to 3 significant figures, giving 0.127 moles</span>
Answer:
The
of the given reaction is -129.6 kJ
Explanation:
The given chemical reaction is as follows.

Enthalpy of each reactant and products are as follows.




In the given chemical reaction involved two C-H bonds in the reactant side and one C-C bond in the product side therefore, the enthalpy of formation will be the negative.



Therefore, The
of the given reaction is -129.6 kJ