answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pavlova-9 [17]
2 years ago
12

A hockey stick is in contact with a 165-g puck for 22.4 ms; during this time, the force on the puck is given approximately by f(

t)=a+bt+ct2, where a =

Chemistry
1 answer:
mario62 [17]2 years ago
3 0
I've found the complete form of this problem from another website which is shown in the attached picture. The equation is:

F(t) = -25 + (1.23×10⁵)t - (5.58×10⁶)t²

a.) For the first question, let's substitute t = 22.4×10⁻³ seconds to the formula.

F = -25 + (1.23×10⁵)(22.4×10⁻³ s) - (5.58×10⁶)(22.4×10⁻³ s)²
F = -69.62 N
From Newton's second law, F = ma.
-69.62 = (165 g)(1 kg/1000 g)(a)
Solving for a,
a = -421.94 m/s² = Δv/Δt = (0 - v)/(22.4×10⁻³ - 0)
Solving for v,
<em>v = 9.45 m/s</em>

b.) To solve for the distance, the formula is:

d = v₀t + 1/2(a)(t²)
Let's use the absolute value of a because distance is always positive.
d = 0(22.4×10⁻³) + 1/2(421.94)(22.4×10⁻³)²
<em>d = 0.106 m</em>

You might be interested in
Explain why c6h5ch2ch2br is not formed during the radical bromination of c6h5ch2ch3. select the single best answer.
gtnhenbr [62]
Hi!

The radical bromination reaction of C₆H₅CH₂CH₃ is performed through a mechanism in which radical reactions are involved. This compound is an alkylbenzene compound, and the carbon that is more reactive towards radical bromination is the carbon bonded to the aromatic ring because in the reaction mechanism the intermediaries are stabilized by resonance in the aromatic ring. 

A terminal substitution will not occur because substitution there will not be stabilized by resonance. The compound that will be formed in this reaction would be:

C₆H₅CH₂CH₃ + Br₂ → C₆H₅CH₂(Br)CH₃ + HBr
7 0
2 years ago
In the manufacture of paper, logs are cut into small chips, which are stirred into an alkaline solution that dissolves several o
Kitty [74]

Answer:

The estimated feed rate of logs is 14.3 logs/min.

Explanation:

The product of the process is 2000 tons/day of dry wood pulp, of 85 wt% of cellulose. That represents (2000*0.85)=1700 tons/day of cellulose.

That cellulose has to be feed by the wood chips, which had 47 wt% of cellulose in its composition. That means you need (1700/0.47)=3617 tons/day of wood chips to provide all that cellulose.

Th entering flow is wood chips with 45 wt% of water. This solution has an specific gravity of 0.640.

To know the specific gravity of the wood chips we have to write a volume balance. We also know that Mw=0.45*M and Mc=0.55*M.

V=V_c+V_w\\\\M/\rho=M_c/\rho_c+Mw/\rho_w\\\\M/\rho=0.55*M/\rho_c+0.45*M/\rho_w\\\\1/\rho=0.55/\rho_c +0.45/\rho_w\\\\0.55/\rho_c=1/\rho-0.45/\rho_w\\\\0.55/\rho_c=1/(0.64*\rho_w)-0.45/\rho_w=(1/\rho_w)*(\frac{1}{0.64}-\frac{0.45}{1}  )\\\\0.55/\rho_c=1.1125/\rho_w\\\\\rho_c=\frac{0.55}{1.1125}*\rho_w= 0.494*\rho_w

The specific gravity of the wood chips is 0.494.

The average volume of a log is

V_l=(\pi*D^{2} /4)*L=(3.1416*\frac{8^{2}  \, in^{2} }{4} )*9ft*(\frac{12 in}{1ft})= 21714 in^{3}=12.57 ft^{3}

The weight of one log is

M=\rho*V=0.494*\rho_w*12.57  ft^{3}\\\\M=0.494*62.4\frac{lbm}{ft^{3} }*12.57ft^{3}\\\\M=387.5lbm

To provide 3617 ton/day of wood chips, we need

n=\frac{supply}{M_{log}}=\frac{3617 tons/day}{387.5 lbm}*\frac{2204lbm}{1ton}\\\\n=20573 logs/day=14.3 logs/min

The feed rate of logs is 14.3 logs/min.

7 0
2 years ago
Read 2 more answers
150.0 grams of AsF3 were reacted with 180.0 g of CCl4 to produce AsCl3 and CCl2F2. The theoretical yield of CCl2F2 produced, in
Kamila [148]
The chemical reaction would be written as 

2 AsF3<span> + 3 CCl4 = 2 AsCl3 + 3 CCl2F2
</span>
We use the given amounts of the reactants to first find the limiting reactant. Then use the amount of the limiting reactant to proceed to further calculations.

150 g AsF3 ( 1 mol / 131.92 g) = 1.14 mol AsF3
180 g CCl4 (1 mol / 153.82 g) = 1.17 mol CCl4

 Therefore, the limiting reactant would be CCl4 since it would be consumed completely. The theoretical yield would be:

1.17 mol CCl4 ( 3 mol CCl2F2 / 3 mol CCl4 ) = 1.17 mol CCl2F2

7 0
1 year ago
A solution of HCl has StartBracket upper H superscript plus EndBracket. = 0.01 M. What is the pH of this solution?
hoa [83]

Answer:

2

Explanation:

Data:

[H⁺] = 0.01 mol·L⁻¹

Calculation:

pH = -log[H₃O⁺] = -log(0.01) = -log(1) - log(10⁻²) = -0 - (-2) = 0 + 2 = 2

7 0
1 year ago
Consider the reaction H2(g) + Cl2(g) → 2HCl(g)ΔH = −184.6 kJ / mol If 2.00 moles of H2 react with 2.00 moles of Cl2 to form HCl,
zalisa [80]

Answer:

ΔU=-369.2 kJ/mol.

Explanation:

We start from the equation:

Δ(H)=ΔU+Δ(PV), which is an extension of the well known relation: H=U+PV.

If Δ(PV) were calculated by ideal gas law,

PV=nRT

Δ(PV)=RTΔn.

Where Δn is the change of moles due to the reaction; but, this reaction does not give a moles change (Four moles of HCl produced from 4 moles of reactants), so Δ(PV)=0.

So, for this case, ΔH=ΔU.

The enthalpy of reaction given is for one mole of reactant, so the enthalpy of reaction for the reaction of interest must be multiplied by two:

2 reactant moles*\frac{-184.6kJ}{mol}

ΔU=-369.2 kJ/mol.

4 0
2 years ago
Other questions:
  • Suppose you wish to make 0.879 l of 0.250 m silver nitrate by diluting a stock solution of 0.675 m silver nitrate. how many mill
    11·1 answer
  • An atom has a diameter of approximately 0.0010 um. How many meters is this?
    10·1 answer
  • What color does green calcite streak? is this true for all colors of calcite?
    14·1 answer
  • How many grams of copper (I) chloride can be produced from the reaction of 73.5 g of copper (I) oxide with hydrochloric acid acc
    13·1 answer
  • Which description correctly characterizes the acidity or basicity of a solution? The higher the pH is, the more the hydroxide io
    14·2 answers
  • The solubility of CaCl2 in water is 25g per 50 mL of H2O. How many grams of CaCl2 will dissolved to form a saturated solution in
    7·1 answer
  • True or False:
    12·1 answer
  • A generic element, Z, has two isotopes, 45Z and 47Z, and an average atomic mass of 45.36 amu. The natural abundances of the two
    8·1 answer
  • You are carefully watching the temperature of your melting point apparatus as it is heating up. At 132 C it is still a white sol
    7·1 answer
  • 3. A 31.2-g piece of silver (s = 0.237 J/(g · °C)), initially at 277.2°C, is added to 185.8 g of a liquid, initially at 24.4°C,
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!