Answer:
Chemists make observations on the macroscopic a scale that lead to conclusions about microscopic features
Explanation:
Many important chemical observations are made on the macroscopic scale. This is because, many of the scientific equipments available are not presently able to provide direct evidence about microscopic processes. Evidences obtained from macroscopic observations could serve as important insights into the nature of certain microscopic processes.
This is evident in the study of the structure of the atom. Most of the evidences that led to the deduction of the atomic structure were obtained from macroscopic evidence but ultimately provided important information about the microscopic structure of the atom.
To be able to answer this equations, we must set given information. Suppose the reaction to yield NO is:
N₂ + O₂ → 2 NO
Next, suppose you have 1 g of each of the reactants. Determine first which is the limiting reactant.
1 g N₂ (1 mol N₂/ 28 g)(2 mol NO/1 mol N₂)= 0.07154 mol NO present
Number of molecules = 0.07154 mol NO(6.022×10²³ molecules/mol)
<em>Number of molecules = 4.3×10²² molecules NO present</em>
<u>Answer:</u>
Specific heat of a substance is the value that describe how the added heat energy of substance has the impact on its temperature.
Unit is <em>
</em>
<em>C = Q/m. ∆T</em>
<em>C – Specific heat
</em>
<em>Q- heat energy (J)</em>
<em>M – Mass (Kg)</em>
<em>∆T- change in temperature (K) </em>
<u>Explanation:</u>
<em>Given data:</em>
<em>M= 140 g = 0.14 Kg</em>
<em>Q – 1080 Joules.</em>
<em>∆T – 98.4 – 62.2 = 36.2</em>
Substituting the given data in Equation
<em>Specific heat of Aluminium =
</em>
Answer:
n NaHCO3 = 9.6 E-3 mol
Explanation:
balanced reaction:
- 2 NaHCO3(s) + H2SO4(ac) ↔ Na2SO4(ac) + 2 CO2(g) + 2 H2O(l)
- assuming a concentration of H2SO4 6M....normally worked in the lab
⇒ n H2SO4 = 8 E-4 L * 6 mol/L = 4.8 E-3 mol H2SO4
according to balanced reaction, we have that for every mol of H2SO4 there are two mol of NaHCO3 ( sodium bicarbonate)
⇒ mol NaHCO3 = 4.8 E-3 mol H2SO4 * ( 2 mol NaHCO3 / mol H2SO4 )
⇒ ,mol NaHCO3 = 9.6 E-3 mol
So 9.6 E-3 mol NaHCO3, are the minimun moles necessary to neutralize the acid.
Answer: Option (c) is the correct answer.
Explanation:
When there will be interaction between 2,3-bisphosphoglycerate (BPG) and Lys residue in the central cavity of hemoglobin then it will change into Ser residue. After that, the it will lead to less stable formation of deoxygenated state (T state).
Since, serine is not a charged amino acid therefore, it will lead to a decrease in the binding affinity of hemoglobin for 2,3-bisphosphoglycerate.
As a result, stability of the T state will decrease.
Thus, we can conclude that in the given situation the T state would be less stable.