The correct answer is option 2 and 3.
The two scenarios that illustrate the relationship between pressure and volume as described by Boyle’s law are as follows:
2. The volume of an underwater bubble increases as it rises and the pressure decreases.
3. The pressure increases in an inflated plastic bag when the bag is stepped on.
According to Boyle's law, pressure of a gas is inversely proportional to its volume at constant temperature. This means that pressure rises as the volume increases and vice versa.
Answer:
The new molar concentration of CO at equilibrium will be :[CO]=1.16 M.
Explanation:
Equilibrium concentration of all reactant and product:
![[CO_2] = 0.24 M, [H_2] = 0.24 M, [H_2O] = 0.48 M, [CO] = 0.48 M](https://tex.z-dn.net/?f=%5BCO_2%5D%20%3D%200.24%20M%2C%20%5BH_2%5D%20%3D%200.24%20M%2C%20%5BH_2O%5D%20%3D%200.48%20M%2C%20%5BCO%5D%20%3D%200.48%20M)
Equilibrium constant of the reaction :
![K=\frac{[H_2O][CO]}{[CO_2][H_2]}=\frac{0.48 M\times 0.48 M}{0.24 M\times 0.24 M}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BH_2O%5D%5BCO%5D%7D%7B%5BCO_2%5D%5BH_2%5D%7D%3D%5Cfrac%7B0.48%20M%5Ctimes%200.48%20M%7D%7B0.24%20M%5Ctimes%200.24%20M%7D)
K = 4

Concentration at eq'm:
0.24 M 0.24 M 0.48 M 0.48 M
After addition of 0.34 moles per liter of
and
are added.
(0.24+0.34) M (0.24+0.34) M (0.48+x)M (0.48+x)M
Equilibrium constant of the reaction after addition of more carbon dioxide and water:


Solving for x: x = 0.68
The new molar concentration of CO at equilibrium will be:
[CO]= (0.48+x)M = (0.48+0.68 )M = 1.16 M
I just did guessed on the question and got it right. The answer is kinetic energy.
The number of moles of NaOh that are contained in 65ml of 2.20M solution NaOh in H2o is calculated using the below formula
moles = molarity x volume /1000
that is 65 x2.20 /1000= 0.143 moles
<u>Answer:</u> The electronic configuration of the elements are written below.
<u>Explanation:</u>
Electronic configuration is defined as the representation of electrons around the nucleus of an atom.
Number of electrons in an atom is determined by the atomic number of that atom.
For the given options:
- <u>Option a:</u> Carbon (C)
Carbon is the 6th element of the periodic table. The number of electrons in carbon atom are 6.
The electronic configuration of carbon is 
- <u>Option b:</u> Phosphorus (P)
Phosphorus is the 15th element of the periodic table. The number of electrons in phosphorus atom are 15.
The electronic configuration of phosphorus is 
- <u>Option c:</u> Vanadium (V)
Vanadium is the 23rd element of the periodic table. The number of electrons in vanadium atom are 23.
The electronic configuration of vanadium is 
- <u>Option d:</u> Antimony (Sb)
Antimony is the 51st element of the periodic table. The number of electrons in antimony atom are 51.
The electronic configuration of antimony is 
- <u>Option e:</u> Samarium (Sm)
Samarium is the 62nd element of the periodic table. The number of electrons in samarium atom are 62.
The electronic configuration of samarium is 
Hence, the electronic configuration of the elements are written above.