The most important question for the students to answer is what the discovery did to society. Did it change society in any way or better something?
Displacement = √(3² + 4²)
Displacement = 5 meters north east
Velocity = displacement / time
Velocity = 5 / 35
Velocity = 0.14 m/s northeast
Answer : Option C) Atomic Size
Explanation : The atomic radius of the elements is found to be decreasing if we go from left to right in the modern periodic table. Accordingly,
increases as the number of shielding electrons present in the atomic nucleus of the periodic elements which lies in the same row remains constant while the number of protons in each atomic shell increases.
The effective nuclear charge
of an atom is defined as the net positive charge which is felt by the valence electron of the atomic element.
When
is observed to decrease, it is seen that the atomic radius grows in size. So, it explains the inverse relationship between both. This phenomenon occurs, because there is more screening of the electrons from the nucleus taking place, which is observed due to decrease the attraction between the electron and the nucleus.
To be able to answer this equations, we must set given information. Suppose the reaction to yield NO is:
N₂ + O₂ → 2 NO
Next, suppose you have 1 g of each of the reactants. Determine first which is the limiting reactant.
1 g N₂ (1 mol N₂/ 28 g)(2 mol NO/1 mol N₂)= 0.07154 mol NO present
Number of molecules = 0.07154 mol NO(6.022×10²³ molecules/mol)
<em>Number of molecules = 4.3×10²² molecules NO present</em>
Answer:
The actual Van't Hoff factor for AlCl3 is 3.20
Explanation:
Step 1: Data given
Molarity of AlCl3 = 0.050 M
osmotic pressure = 3.85 atm
Temperature = 20 °C
Step 2: Calculate the Van't Hoff factor
AlCl3(aq) → Al^3+(aq) + 3Cl^-(aq)
The theoretical value is 4 ( because 1 Al^3+ ion + 3 Cl- ions) BUT due to the interionic atractions the actual value will be less
Osmotic pressure depends on the molar concentration of the solute but not on its identity., and is calculated by:
π = i.M.R.T
⇒ with π = the osmotic pressure = 3.85 atm
⇒ with i = the van't Hoff factor
⇒ with M = the molar concentration of the solution = 0.050 M
⇒ with R = the gas constant = 0.08206 L*atm/K*mol
⇒ with T = the temperature = 20 °C = 293.15 Kelvin
i = π /(M*R*T
)
i = (3.85) / (0.050*0.08206*293.15)
i = 3.20
The actual Van't Hoff factor is 3.20