answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bogdanovich [222]
2 years ago
6

The solubility of KCl is 3.7 M at 20 °C. Two beakers each contain 100. mL of saturated KCl solution: 100. mL of 4.0 M HCl is add

ed to the first beaker and 100. mL of 8 M HCl is added to the second. (a) Find the ion-product constant for KCl at 20 °C. 14 Enter as a number to 2 decimal places. (b) What mass, if any, of KCl will precipitate from each beaker? Enter as a number to 0 decimal places. beaker 1: 0 grams beaker2: grams
Chemistry
2 answers:
JulijaS [17]2 years ago
8 0

Answer:

a)The Ksp was found to be equal to 13.69

Explanation:

Terminology

Qsp of a dissolving ionic solid — is the solubility product of the concentration of ions in solution.

Ksp however, is the solubility product of the concentration of ions in solution at EQUILIBRIUM with the dissolving ionic solid.

Note that if Qsp > Ksp , the solid at a certain temperature, will precipitate and form solid. That means the equilibrium will shift to the left in order to attain or reach equilibrium (Ksp).

Step-by-step solution:

To solve this: 

#./ Substitute the molar solubility of KCl as given into the ion-product equation to find the Ksp of KCl.

#./ Find the total concentration of ionic chloride in each beaker after the addition of HCl. We pay attention to the amount moles present at the beginning and the moles added.

#./ Find the Qsp value to to know if Ksp is exceeded. If Qsp < Ksp, nothing will precipitate.

a) The equation of solubility equilibrium for KCL is thus;

KCL_(s) ---> K+(aq) + Cl- (aq)

The solubility of KCl given is 3.7 M.

Ksp= [K+][Cl-] = (3.7)(3.7) =13.69

The Ksp was found to be equal to 14.

In pure water KCl

Ksp =13.69 KCl =[K+][Cl-]

Let x= molar solubility [K+],/[Cl-] :. × , x

Ksp =13.69 = [K+][Cl-] = (x)(x) = x²

x= √ 13.69 = 3.7 M moles of KCl requires to make 100mL saturated solutio

37M moles/L

The Ksp was found to be equal to 14.

4.0 M HCl = KCl =[K+][Cl-]

Let y= molar solubility :. y, y+4

Ksp =13.69= [K+][Cl-] = (y)(y*+4)

* - rule of thumb

Ksp =13.69= [K+][Cl-] = (y)(y*+4)= y(4)

13.69=4y:. y= 3.42 moles/100mL

y= 34.2moles/L

8 M HCl = KCl =[K+][Cl-]

Let b= molar solubility :. B, b+8

Ksp =13.69= [K+][Cl-] = (b)(b*+8)

* - rule of thumb

Ksp =13.69= [K+][Cl-] = (b)(b*+8)= b(8)

13.69=8b:. b= 1.71 moles/100mL

17.1 moles/L

Therefore in a solution with a common ion, the solubility of the compound reduces dramatically.

defon2 years ago
8 0

Answer:

(a) 13.69

(b) i beaker 1: 0g

    ii beaker 2: 0g

Explanation:

a. The solubility equilibrium equation for KCl is

KCl(s)  ⇄  K⁺(aq)  +  Cl⁻(aq)

3.7M KCl contains equal moles of K ions and Cl ions

therefore, the ion-product expression is written thus

Ksp = [K⁺][Cl⁻]

       = [3.7][3.7]

       = 13.69

b. from the first two beakers containing 100 mL and 3.7M KCl

moles of K⁺ = moles of Cl⁻ = moles of KCl = 3.7moles in 1L

if 3.7M Implies 3.7 moles in 1L or 1000 mL or 1000 cm³

how many moles will be contained in 100 mL

this is calculated as follows

3.7moles/Liter * 100 mL

\frac{3.7 moles KCl}{1000 mL} * 100 ml = 0.37moles KCl

= 0.37moles K⁺ = 0.37moles Cl⁻

4.0 M HCl, contains

\frac{4 moles HCl}{1000 mL} *100mL = 0.4moles HCl = 0.4 moles H = 0.4moles Cl in 100mL

8.0M HCl, contains

\frac{8moles HCL}{1000mL} *100mL=0.8mole HCl=0.8molesH=0.8molesCl in 100mL

now, in the first beaker 100 mL of 4M HCl is added to 100 mL of 3.7M KCl

total moles of Cl⁻ (0.4 + 0.37) moles = 0.77 moles

total moles of K⁺ remains 0.37 moles

total volume of solution = (100mL + 100mL) = 200mL/1000mL = 0.2L

total moles of Cl⁻ per Liter = 0.77moles/0.2L = 3.85M Cl⁻

total moles of K⁺ per Liter = 0.37moles/0.2L = 1.85M K⁺

Qsp must be greater or equal to Ksp for Precipitation to occur, that is

Qsp ≥ Ksp

Qsp = [K][Cl] = [1.85][3.85] = 7.12 this is less than 13.69(Ksp)

hence no KCl will precipitate in the first beaker

since there is no precipitate, there is therefore no need for calculating the mass precipitated

and the answer is 0g

(bii) now, in the second beaker 100 mL of 8M HCl is added to 100 mL of 3.7M KCl

total moles of Cl⁻ (0.8 + 0.37) moles = 1.17 moles

total moles of K⁺ remains 0.37 moles

total volume of solution = (100mL + 100mL) = 200mL/1000mL = 0.2L

total moles of Cl⁻ per Liter = 1.17moles/0.2L = 5.85M Cl⁻

total moles of K⁺ per Liter = 0.37moles/0.2L = 1.85M K⁺

Qsp must be greater or equal to Ksp for Precipitation to occur, that is

Qsp ≥ Ksp

Qsp = [K][Cl] = [1.85][5.85] = 10.82 this is less than 13.69(Ksp)

hence no KCl will precipitate also in the second beaker

since there is no precipitate, there is therefore no need fo calculating the mass precipitated

and the answer is 0g

You might be interested in
The density of phosphorus vapor at 310 degrees celcius and 775 mmHg is 2.64g/L. what is the molecular formula of the phosphorus
lidiya [134]

Answer:

The molecular formula of the phosphorus is P4

Explanation:

<u>Step 1:</u> Data given

Density of phosphorus vapor at 310 °C and 775 mmHg = 2.64g /L

<u>Step 2: </u>Calculate the molecular weight

We assume phosphorus to be an ideal gas

So p*V = n*R*T

 ⇒ with p = the pressure of phosphorus = 775 mmHg

⇒ with V = the Volume

⇒ with n = the number of moles = mass/molecular weight

⇒ with R = ideal gas constant  = 0.08206 L*atm/K*mol

⇒ with T = the absolute temperature

p*V = m/MW *R*T

MW = mRT/PV

 ⇒ Since the volume is unknown but can be written as density = mass/volume

MW = dRT/P

MW = (2.64g/L * 0.08206 L*atm/K*mol * 583 Kelvin)/1.0197 atm

MW = 123.86 g/mol

<u>Step 3</u>: Calculate molecular formula of phosphorus

The relative atomic mass of phosphorus = 30.97 u

123.86 / 30.97 = 4

The molecular formula of the phosphorus is P4

5 0
2 years ago
Suppose a group of volunteers is planning to build a park near a local lake. The lake is known to contain low levels of arsenic
Kisachek [45]

Answer:

A) 10.75 is the concentration of arsenic in the sample in parts per billion .

B) 7,633.66 kg the total mass of arsenic in the lake that the company have to remove.

C) It will take 1.37 years to remove all of the arsenic from the lake.

Explanation:

A) Mass of arsenic in lake water sample = 164.5 ng

The ppb is the amount of solute (in micrograms) present in kilogram of a solvent. It is also known as parts-per million.

To calculate the ppm of oxygen in sea water, we use the equation:

\text{ppb}=\frac{\text{Mass of solute}}{\text{Mass of solution}}\times 10^9

Both the masses are in grams.

We are given:

Mass of arsenic = 164.5 ng = 164.5\times 10^{-9} g

1 ng=10^{-9} g

Volume of the sample = V = 15.3 cm^3

Density of the lake water sample ,d= 1.00 g/cm^3

Mass of sample =  M = d\times V=1.0 g/cm^3\times 15.3 cm^3=15.3 g

ppb=\frac{164.5\times 10^{-9} g}{15.3 g}\times 10^9=10.75

10.75 is the concentration of arsenic in the sample in parts per billion.

B)

Mass of arsenic in 1 cm^3  of lake water = \frac{164.5\times 10^{-9} g}{15.3}=1.075\times 10^{-8} g

Mass of arsenic in 0.710 km^3 lake water be m.

1 km^3=10^{15} cm^3

Mass of arsenic in 0.710\times 10^{15} cm^3 lake water :

m=0.710\times 10^{15}\times 1.075\times 10^{-8} g=7,633,660.130 g

1 g = 0.001 kg

7,633,660.130 g = 7,633,660.130 × 0.001 kg=7,633.660130 kg ≈ 7,633.66 kg

7,633.66 kg the total mass of arsenic in the lake that the company have to remove.

C)

Company claims that it takes 2.74 days to remove 41.90 kilogram of arsenic from lake water.

Days required to remove 1 kilogram of arsenic from the lake water :

\frac{2.74}{41.90} days

Then days required to remove 7,633.66 kg of arsenic from the lake water :

=7,633.66\times \frac{2.74}{41.90} days=499.19 days

1 year = 365 days

499.19 days = \frac{499.19}{365} years = 1.367 years\approx 1.37 years

It will take 1.37 years to remove all of the arsenic from the lake.

3 0
2 years ago
A sample of a compound containing only carbon and oxygen decomposes and produces 24.50g of carbon and 32.59g of oxygen. what is
Fynjy0 [20]
<span>Carbon Monoxide. First, determine the relative number of moles of each element by looking up the atomic weights of carbon and oxygen Atomic weight carbon = 12.0107 Atomic weight oxygen = 15.999 Moles of Carbon = 24.50 g / 12.0107 g/mol = 2.039847802 mol Moles of Oxygen = 32.59 g / 15.999 g/mol = 2.037002313 mol Given that the number of moles of both carbon and oxygen are nearly identical, it wouldn't be unreasonable to think that the empirical formula for the compound is CO which also happens to be the formula for Carbon Monoxide.</span>
3 0
2 years ago
Read 2 more answers
Consider the balanced equation below. 4NH3 + 3O2 --&gt; 2N2 + 6H2O What is the mole ratio of NH3 to N2?
AURORKA [14]
The balanced equation given is:
4NH3 + 3O2 .....> 2N2 + 6H2O

From this equation, we can note that 4 moles of NH3 are required to produce 2 moles of N2.

Therefore, the mole ratio of NH3 to N2 is 4:2 which can be simplified into 2:1
4 0
2 years ago
Read 2 more answers
Which of the following is not a common use of gypsum? a. wallboard/drywall for homes b. a primary ingredient for toothpaste c. s
Nataliya [291]

Answer:

pH reducing agent for acidic soils

Explanation:

Gypsum is not used to reduce soil pH because it will displace the soil H+ but there's no means of extracting the H from the soil. So the pH of the soil remains the same.

3 0
2 years ago
Other questions:
  • Use bond energies to determine δhrxn for the reaction between ethane and chlorine. ch3ch3(g)+cl2(g)→ch3ch2cl(g)+hcl(g)
    9·2 answers
  • A gas occupies 2.22 l at 3.67 atm. what is the volume at 1.94 atm?
    8·1 answer
  • What kinds of intermolecular forces are involved in solution formation?
    14·1 answer
  • After researching the possible effects of music, Elaina proposes that if people listen to faster-paced music, their pulse rates
    12·1 answer
  • What conclusion can you draw from the experiment about the components of the black ink
    10·1 answer
  • the image above shows a chamber with a fixed volume filled with gas at a pressure of 1560 mmHg and a temperature of 445.0 K. If
    11·1 answer
  • Chose the statements that are TRUE from the list below Group of answer choices Ions exist alone in nature We add calcium carbona
    5·1 answer
  • What is osmotic pressure of a solution that contains 13.7 g of propyl alcohol (C3H7OH) dissolved in enough water to make 500 mL
    9·1 answer
  • Calculate the wavelength of a photon of green light that has a frequency (v) of 5.76x10^14 s^-1
    9·1 answer
  • The mass of radium-226 in a sample is found to have decreased from 45.00g to 5.625g in a period of 4800 years.From this informat
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!