Answer:
The atomic radius of calcium is approximately 175
Explanation:
Given that the atomic radius of magnesium = 150 pm
The atomic radius of strontium = 200 pm
Therefore, given that calcium comes in between magnesium and strontium in group 2 of the periodic table, the atomic radius should be half way between the length of the atomic radius of magnesium and strontium, given that the atomic radius is not a fixed quantity
Therefore;
The atomic radius of calcium is approximately given as follows;
The approximate atomic radius (200 + 150)/2 = 175 pm.
Answer: one simple distillation column is required to separate the stream into five pure products. With four different flat bottom flask, for collection of the distilled products
Explanation: simple distillation works with the difference in boiling points of the liquid to be separated. For the separation of five different constituent to be possible, we have to know the boiling points of the constituents.
For your understanding, let's define constituents in the liquid to be A, B, C, D, E. And the boiling points increases respectively. Start by heating the liquid to the boiling point of A to extract A. After a while check if the constituents A is still dropping in the flat bottom flask, if it has stopped dropping, it simply means that we have extracted all A constituents in the liquid, label the Flask A. Get another flask to extract constituent B.
Heat the mixture to the boiling point of B, after a while check if constituent B is still dropping in the flat bottom flask, if it has stopped dropping,it means that we have extracted all B constituent in the liquid, label the Flask B. Get another flask for C.
Repeat the same process for C and D.
After Extracting D we don't need to distillate E because we already have a pure form of E inside to the conical flask.
SEE PICTURE TO UNDERSTAND WHAT A SIMPLE DISTILLATION LOOKS LIKE
Answer:

Explanation:
Hello,
In this case, we apply the Gay-Lussac's law which allows us to understand the pressure-temperature behavior as a directly proportional relationship:

Thus, we solve for the final pressure P2 to obtain it as shown below:

Hence, we notice that the temperature doubles as well as the pressure.
Best regards.
Simply put, MA = Force Out / Force in. That's the way it is usually stated. The force out is normally what you need to move. The force in is what you need to supply to get the force out. Most machines will give you an MA of more than 1. Some (like your arm) will give you less than 1 and others (like this one) will give you exactly one.
This one is frictionless, otherwise it would slip into less than one if it had friction.
Answer B