If I am correct I would believe that it would be a muscle cell.
Answer:
Percent loss of water = 25%
Explanation:
Given data:
Mass of hydrated salt = 15.6 g
Mass of anhydrous salt = 11.7 g
Percentage of water lost = ?
Solution:
First of all we will calculate the mass of water in hydrated salt.
Mass of water = Mass of hydrated salt - Mass of anhydrous salt
Mass of water = 15.6 g - 11.7 g
Mass of water = 3.9 g
Now we will calculate the percentage.
Percent loss of water = mass of water / total mass × 100
Percent loss of water = 3.9 g/ 15.6 g × 100
Percent loss of water = 25%
Anna lives in a city that is part of the tropical climate types. It has a constantly warm weather, and thus higher humidity, and according to the annual rainfall, it is most probably a rainfall that appears seasonally, not throughout the whole year.
Tim, on the other hand, lives in a city that is part of the dry climate types. It is most probably a place that is deep into the mainland, like the cold deserts of Central Asia, where the temperatures in the summer are high, and in winter are very low. Because of the distance from the sea, the rainfall doesn't reach this places, so they are very dry, and only have symbolic amount of annual rainfall.
Answer: pH=12.69
Explanation:



Initial 0.12 0 0
Eqm 0.12-x x x
![K_a=\frac{[H^+][F^-]}{[HF]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH%5E%2B%5D%5BF%5E-%5D%7D%7B%5BHF%5D%7D)
(neglecting small value of x in comparison to 0.12)

Moles of 



0.06 moles of NaOH will give 0.06 moles of ![[OH^-]](https://tex.z-dn.net/?f=%5BOH%5E-%5D)
Now
moles of
will be neutralized by
moles of
and
moles of
will be left.
Molarity of 
![pOH=-\log[OH^-]=-\log[0.049]=1.31](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5BOH%5E-%5D%3D-%5Clog%5B0.049%5D%3D1.31)
pH = 14 - pOH= 14 - 1.31 = 12.69