First, let us find the corresponding amount of moles H₂ assuming ideal gas behavior.
PV = nRT
Solving for n,
n = PV/RT
n = (6.46 atm)(0.579 L)/(0.0821 L-atm/mol-K)(45 + 273 K)
n = 0.143 mol H₂
The stoichiometric calculations is as follows (MW for XeF₆ = 245.28 g/mol)
Mass XeF₆ = (0.143 mol H₂)(1 mol XeF₆/3 mol H₂)(245.28 g/mol) = <em>11.69 g</em>
Answer:
Partial pressure of nitrogen gas is 0.98 bar.
Explanation:
According to the Dalton's law, the total pressure of the gas is equal to the sum of the partial pressure of the mixture of gases.




where,
= total pressure = 3.9 bar
= partial pressure of nitrogen gas
= partial pressure of oxygen gas
= partial pressure of argon gases
= Mole fraction of nitrogen gas = 0.25
= Mole fraction of oxygen gas = 0.65
= Mole fraction of argon gases = 0.10
Partial pressure of nitrogen gas :

Partial pressure of oxygen gas :

Partial pressure of argon gas :

<span>Answer:
.01 moles of D to .005 moles of L ~ so, .01+.005 = .015 total; using this total value, divide the portions of D and L.
so .01/.015 to .005/.015 ~ 67% D to 33% L.
And thus, the enantiomer excess will be 34%.</span>
Answer:
Explanation:
Pair 2.50g of O₂ and 2.50g of N₂
The atoms sample with the largest number of moles since the masses are the same would be the one with lowest molar mass according the the equation below:
Number of moles = 
Atomic mass of O = 16g and N = 14g
Molar mass of O₂ = 16 x 2 = 32gmol⁻¹
Molar mass of N₂ = 14 x 2 = 28gmol⁻¹
Number of moles of O₂ =
= 0.078mole
Number of moles of N₂ =
= 0.089mole
We see that N₂ has the largest number of moles
Answer:
The mass of the solute and the volume of the solution.
Explanation:
Hello,
In this case, given the formula of molarity:

In such a way, since the moles could not be directly measured, we must measure the mass of the solute and by using its molar mass, one could compute its moles. Moreover, since the solution is composed by the solvent (typically water) and the solute, we consequently must measure the volume of the solution needed for the preparation of such concentration-known solution. In such a way, we can actually prepare the required solution.
Best regards.