Answer : The correct options are,
(B) 
(C) 
Explanation :
Boyle's Law : It is defined as the pressure of the gas is inversely proportional to the volume of the gas at constant temperature and number of moles.

or,

The relation between the pressure and volume of two gases are:

where,
= initial pressure of gas
= final pressure of gas
= initial volume of gas
= final volume of gas
It is going to be too low because the mass mistakenly used is lower than the initial.
Answer:
a)4.51
b) 9.96
Explanation:
Given:
NaOH = 0.112M
H2S03 = 0.112 M
V = 60 ml
H2S03 pKa1= 1.857
pKa2 = 7.172
a) to calculate pH at first equivalence point, we calculate the pH between pKa1 and pKa2 as it is in between.
Therefore, the half points will also be the middle point.
Solving, we have:
pH = (½)* pKa1 + pKa2
pH = (½) * (1.857 + 7.172)
= 4.51
Thus, pH at first equivalence point is 4.51
b) pH at second equivalence point:
We already know there is a presence of SO3-2, and it ionizes to form
SO3-2 + H2O <>HSO3- + OH-
![Kb = \frac{[ HSO3-][0H-]}{SO3-2}](https://tex.z-dn.net/?f=%20Kb%20%3D%20%5Cfrac%7B%5B%20HSO3-%5D%5B0H-%5D%7D%7BSO3-2%7D)

[HSO3-] = x = [OH-]
mmol of SO3-2 = MV
= 0.112 * 60 = 6.72
We need to find the V of NaOh,
V of NaOh = (2 * mmol)/M
= (2 * 6.72)/0.122
= 120ml
For total V in equivalence point, we have:
60ml + 120ml = 180ml
[S03-2] = 6.72/120
= 0.056 M
Substituting for values gotten in the equation ![Kb=\frac{[HSO3-][OH-]}{[SO3-2]}](https://tex.z-dn.net/?f=Kb%3D%5Cfrac%7B%5BHSO3-%5D%5BOH-%5D%7D%7B%5BSO3-2%5D%7D%20)
We noe have:

![x = [OH-] = 9.11*10^-^5](https://tex.z-dn.net/?f=x%20%3D%20%5BOH-%5D%20%3D%209.11%2A10%5E-%5E5)

=4.04
pH = 14- pOH
= 14 - 4.04
= 9.96
The pH at second equivalence point is 9.96
Answer: 91.73g of NaCl
Explanation:
First, we solve for the number of moles of F2 using the ideal gas equation
V = 12L
P = 1.5 atm
T = 280K
R = 0.082atm.L/mol/K
n =?
PV = nRT
n = PV /RT
n = (1.5x12)/(0.082x280)
n = 0.784mol
Next, we convert this mole ( i.e 0.784mol) of F2 to mass
MM of F2 = 19x2 = 38g/mol
Mass conc of F2 = n x MM
= 0.784 x 38 = 29.792g
Equation for the reaction is given below
F2 + 2NaCl —> 2NaF + Cl2
Molar Mass of NaCl = 23 + 35.5 = 58.5g/mol
Mass conc. of NaCl from the equation = 2 x 58.5 = 117g
Next, we find the mass of NaCl that reacted with 29.792g of F2.
From the equation,
38g of F2 redacted with 117g of NaCl.
Therefore, 29.792g of F2 will react with Xg of NaCl i.e
Xg of NaCl = (29.792 x 117)/38
= 91.73g
Therefore, 91.73g of NaCl reacted with f2
Answer:
The rate of decay of atoms in container A is greater than the rate of decay of atoms in container B.
Explanation:
From the question,
Container A contains 1000 atoms
Container B contains 500 atoms
<u>The rate of decay of atoms in container A is greater than the rate of decay of atoms in container B.</u>
The reason for such is due to the difference in the concentration of the isotopes. Container A which contains higher number of atoms will have the more changes of the release of the neutron as the changes of the hitting and splitting increases as the density of the atoms increases.
<u>Thus, the atoms in the container A will therefore decay faster than the atoms in the container B. </u>