Answer:
Incomplete question
Complete question:
8. Compartments A and B are separated by a membrane that is permeable to K+ but not to Na+ or Cl-. At time zero, a solution of KCl is poured into compartment A and an equally concentrated solution of NaCl is poured into compartment B. Which would be true once equilibrium is reached?
A. The concentration of Na+ in A will be higher than it was at time zero.
B. Diffusion of K+ from A to B will be greater than the diffusion of K+ from B to A.
C. There will be a potential difference across the membrane, with side B negative relative to side A.
D. The electrical and diffusion potentials for K+ will be equal in magnitude and opposite in direction.
E. The concentration of Cl- will be higher in B than it was at time zero.
Answer: D. The electrical and diffusion potentials for K+ will be equal in magnitude and opposite in direction.
Explanation:
Diffusion is the movement of molecules from region of higher concentration to lower concentration through a semipermeable membrane.
Since the k+ is the permeable membrane, the k+ ion in the KCl would move in equal magnitude and direction in the solution.
Answer:
Option A. 1 0n
Explanation:
Details on how to balanced the equation for the reaction given in the question above can be found in the attached photo.
Answer:
Supervision of weights and measures promotes accurate measurements of goods and services to ensure that everybody gets a fair trade in the marketplace. Not so coincidentally it also is a deterrent to ensure that traders are being honest in their trade practises.
Explanation:
<h3>
Answer:</h3>
1 x 10^13 stadiums
<h3>
Explanation:</h3>
We are given that;
1 stadium holds = 1 × 10^5 people
Number of iron atoms is 1 × 10^18 atoms
Assuming the stadium would carry an equivalent number of atoms as people.
Then, 1 stadium will carry 1 × 10^5 atoms
Therefore,
To calculate the number of stadiums that can hold 1 × 10^18 atoms we divide the total number of atoms by the number of atoms per stadium.
Number of stadiums = Total number of atoms ÷ Number of atoms per stadium
= 1 × 10^18 atoms ÷ 1 × 10^5 atoms/stadium
= 1 × 10^13 Stadiums
Thus, 1 × 10^18 atoms would occupy 1 × 10^13 stadiums
<h3>Answer:</h3>
Formal Charge on Nitrogen is "Zero".
<h3>Explanation:</h3>
Formal Charge on an atom in molecules is calculated using following formula;
Formal Charge = [# of Valence e⁻s] - [e⁻s in lone pairs + 1/2 # of Bonding e⁻s]
As shown in attached picture of Hydroxylamine, Nitrogen atom is containing two electrons in one lone pair of electrons and six electrons in three single bonds with two hydrogen and one oxygen atom respectively.
Hence,
Formal Charge = [5] - [2 + 6/2]
Formal Charge = [5] - [2 + 3]
Formal Charge = 5 - 5
Formal Charge = 0 (zero)
Hence, the formal charge on nitrogen atom in hydroxylamine is zero.