Answer : The correct option is, 
Explanation :
Formula used :
where,
= heat released = 24 KJ
= mass of bomb calorimeter = 1.30 Kg
= specific heat =
= final temperature = ?
= initial temperature =
Now put all the given values in the above formula, we get the final temperature of the calorimeter.

Therefore, the final temperature of the calorimeter is, 
Answer: one simple distillation column is required to separate the stream into five pure products. With four different flat bottom flask, for collection of the distilled products
Explanation: simple distillation works with the difference in boiling points of the liquid to be separated. For the separation of five different constituent to be possible, we have to know the boiling points of the constituents.
For your understanding, let's define constituents in the liquid to be A, B, C, D, E. And the boiling points increases respectively. Start by heating the liquid to the boiling point of A to extract A. After a while check if the constituents A is still dropping in the flat bottom flask, if it has stopped dropping, it simply means that we have extracted all A constituents in the liquid, label the Flask A. Get another flask to extract constituent B.
Heat the mixture to the boiling point of B, after a while check if constituent B is still dropping in the flat bottom flask, if it has stopped dropping,it means that we have extracted all B constituent in the liquid, label the Flask B. Get another flask for C.
Repeat the same process for C and D.
After Extracting D we don't need to distillate E because we already have a pure form of E inside to the conical flask.
SEE PICTURE TO UNDERSTAND WHAT A SIMPLE DISTILLATION LOOKS LIKE
the actual yield is the amount of Na₂CO₃ formed after carrying out the experiment
theoretical yield is the amount of Na₂CO₃ that is expected to be formed from the calculations
we need to first find the theoretical yield
2Na₂O₂ + 2CO₂ ---> 2Na₂CO₃ + O₂
molar ratio of Na₂O₂ to Na₂CO₃ is 2:2
number of Na₂O₂ moles reacted is equal to the number of Na₂CO₃ moles formed
number of Na₂O₂ moles reacted is - 7.80 g / 78 g/mol = 0.10 mol
therefore number of Na₂CO₃ moles formed is - 0.10 mol
mass of Na₂CO₃ expected to be formed is - 0.10 mol x 106 g/mol = 10.6 g
therefore theoretical yield is 10.6 g
percent yield = actual yield / theoretical yield x 100%
81.0 % = actual yield / 10.6 g x 100 %
actual yield = 10.6 x 0.81
actual yield = 8.59 g
therefore actual yield is 8.59 g
Answer:
Phosphorous has the smallest atomic size.
Explanation:
As we know these elements belong to same period means there valence shell is the same. So moving from left to right along the period the shell number remains constant but the number of protons and electrons increases. So, due to increase in number of protons the nuclear charge increases hence attracts the valence electrons more effectively resulting in the decrease of atomic size.
Elements and their atomic radius are as follow,
<span><span>Magnesium 0.160 nm
</span><span>
Aluminium 0.130 nm
</span><span>
Silicon 0.118 nm
</span><span>
Phosphorus <span>0.110 nm</span></span></span>
The volume would be 92.65256
explanation
just multiply 8.9 by 5.72 by 1.82
i would round it to two decimal places with a final answer of 92.65cm^3