<u>Answer:</u> The equilibrium constant for
equation is 
<u>Explanation:</u>
The given chemical equation follows:

The value of equilibrium constant for the above equation is 
Calculating the equilibrium constant for the given equation:

The value of equilibrium constant for the above equation will be:

Hence, the equilibrium constant for
equation is 
Answer:
Mass of solution=100g
mass of salt=20g
so; mass of solute=80g
percentage composition =(mass of salt/total
mass) ×100
= \frac{20}{100} \times 100 \\ = 20\%
glad to help you
hope it helps
Concept:
<em><u>Latent Heat of Vaporization</u></em>: It is defined as the amount of heat required to change the state of mater without changing of its temperature.
From the given question, the temperature at the boiling point remained constant despite the continued addition of heat by the Bunsen burner. <em>Actually,</em> this amount of heat is used by water to break the intermolecular bonds between the water molecules in the form of latent heat that converts the liquid state of water into vapor state of water.
Hence, the correct option will be d.<u>The energy was used to break the intermolecular bonds between the water molecules. </u>
Answer:
Temperature affects Seismic Wave speed.
Explanation:
Both temperature and pressure affect the speed of Seismic waves. The Speed of Seismic waves increases uniformly as pressure increases, meaning that as depth increases, pressure also increases which causes Seismic Wave speeds to increase as well. This can be calculated and the data can be gathered. Temperature on the other hand decreases the speed of Seismic Waves, therefore we can calculate the difference of speed between what the Seismic Wave should be at a certain pressure with the actual speed gathered. This difference in speed will allow us to determine the actual temperature at that level.
The Lewis structure for H₂CO is shown in the attached picture. The central atom is the carbon. However, I'm not sure which bond you're referring to. There can be two answers. The two C-H bonds are sp³ hybridized because it is a single bond. The C=O bond is sp² hybridized because it is a double bond.