Answer:
The energy required is 3225 Joules.
Explanation:
Given,
mass of lead cube = 500 grams
T₁ = 25°C
T₂ = 75°C
specific heat of lead = 0.129 J/g°C
Energy required to heat the lead can be found by using the formula,
Q = (mass) (ΔT) (Cp)
Here, ΔT = T₂ - T₁ = 75 - 25 = 50
Substituting the values,
Q = (500)(50)(0.129)
Q = 3225 Joules.
Therefore, energy required is 3225 J.
Answer:
<h2>1. Ionic compound-

</h2><h2>2. Polar molecular compound-

</h2>
Explanation:
Mg is a metal that has 12 atomic numbers and thus its electronic configuration is
. The outer most shell of this element has 2 electrons so it loses 2 electrons and thus form
ions. Br is a nonmetal and has 35 atomic number so its electronic configuration is
. Since its outermost shell has 7 electrons so it can accept one electron and thus forms
. So magnesium ion and bromide ion combine and forms an ionic compound
.
P is also a nonmetal and combine with Br with covalent bond and due to electronegativity differences form polar covalent compound such as
.
Answer: 0.0164 molar concentration of hydrochloric acid in the resulting solution.
Explanation:
1) Molarity of 0.250 L HCl solution : 0.0328 M

Moles of HCl in 0.250 L solution = 0.0082 moles
2) Molarity of 0.100 L NaOH solution : 0.0245 M

Moles of NaOH in 0.100 L solution = 0.00245 moles
3) Concentration of hydrochloric acid in the resulting solution.
0.00245 moles of NaOH will neutralize 0.00245 moles of HCl out of 0.0082 moles of HCl.
Now the new volume of the solution = 0.100 L +0.250 L = 0.350 L
Moles of HCl left un-neutralized = 0.0082 moles - 0.00245 moles = 0.00575 moles

Molarity of HCl left un-neutralized :
0.0164 molar concentration of hydrochloric acid in the resulting solution.
Answer:
P = 17.9618 atm
Explanation:
The osmotic pressure can be calculated and treated as if we are talking about an ideal gas, and it's expression is the same:
pV = nRT
However the difference, is that instead of using moles, it use concentration so:
p = nRT/V ----> but M = n/V so
p = MRT
We have the temperature of 18 °C (K = 18+273.15 = 291.15 K) the value of R = 0.08206 L atm / K mol, so we need to calculate the concentration, and we have the mass of HCl, so we use the molar mass of HCl which is 36.45 g/mol:
n = 13.7/36.45 = 0.3759 moles
M = 0.3759/0.5 = 0.7518 M
Now that we have the concentration, let's solve for the osmotic pressure:
p = 0.7518 * 0.08206 * 291.15
<em><u>p = 17.9618 atm</u></em>
The answer should be <span>enteropeptidase
</span>