Answer:
molecular weight (Mb) = 0.42 g/mol
Explanation:
mass sample (solute) (wb) = 58.125 g
mass sln = 750.0 g = mass solute + mass solvent
∴ solute (b) unknown nonelectrolyte compound
∴ solvent (a): water
⇒ mb = mol solute/Kg solvent (nb/wa)
boiling point:
- ΔT = K*mb = 100.220°C ≅ 373.22 K
∴ K water = 1.86 K.Kg/mol
⇒ Mb = ? (molecular weight) (wb/nb)
⇒ mb = ΔT / K
⇒ mb = (373.22 K) / (1.86 K.Kg/mol)
⇒ mb = 200.656 mol/Kg
∴ mass solvent = 750.0 g - 58.125 g = 691.875 g = 0.692 Kg
moles solute:
⇒ nb = (200.656 mol/Kg)*(0.692 Kg) = 138.83 mol solute
molecular weight:
⇒ Mb = (58.125 g)/(138.83 mol) = 0.42 g/mol
11.2L/22.4L (STP value) x 1 mol of CH4 x 16.04 g of CH4 = 8.2 g
Answer:
1. Galvanic oxidation. Example is the corrosion of aluminium wires when in contact with copper wires under wet conditions.
2. Rainwater or Damp/moist air
3. Chromium-plated steel screws or stainless steel screws or galvanized steel screws
Explanation:
1. Galvanic oxidation or corrosion occurs when two different metals with different electrode potentials are brought into contact with each other by means of an electrolyte (usually a aqueous solution), such that a redox reaction occurs leading to one metal with the more negative electrode potential (the anode) becoming oxidized, while the other less negative potential (the cathode) is reduced.
In order for galvanic corrosion to occur, three elements are required.
i. Two metals with different corrosion potentials (anode and cathode)
ii. Direct metal-to-metal electrical contact
iii. A conductive electrolyte solution (e.g. water) must connect the two metals on a regular basis.
For example oxidation (corrosion) of aluminium wires when in contact with copper wire under wet conditions.
2. The most likely electrolyte will be rainwater containing dissoved solutes (if the panel is in an exposed part of the house) or damp/moist air.
3. From the table, the most likely screw will be chromium-plated steel screws or stainless steel (made of iron and nickel) screws or galvanized steel (zinc-plated) screws.
All these possible screw components have a more negative electrode potential than copper. Thus they will serve as the anode in a galvanic oxidation with copper.
It seems that you have missed the necessary options for us to answer this question, but anyway, here is the answer. At STP graphite and diamond are two solid forms of carbon, the statement that explains why these two forms of carbon differ in hardness is this: <span>Graphite and diamond have different molecular structures. Hope this helps.</span>
Answer:

Explanation:
Given:
Initial volume of the balloon V1 = 348 mL
Initial temperature of the balloon T1 = 255C
Final volume of the balloon V2 = 322 mL
Final temperature of the balloon T2 =
To calculate T1 in kelvin
T1= 25+273=298K
Based on Charles law, which states that the volume of a given mass of a ideal gas is directly proportional to the temperature provided that the pressure is constant. It can be applied using the below formula

T2=( V2*T1)/V1
T2=(322*298)/348

Hence, the temperature of the freezer is 276 K