Answer:
Hydrogen peroxide should be stored in
1) a cool environment
2) with amber bottles away from sunlight
3) with little drops of sodium phosphate
Explanation:
It has been confirmed that heat and light aids in the decomposition of hydrogen peroxide according to the equation; 2H2O2→2 H2O + O2.
This means that hydrogen peroxide must be stored in a cool place. This will reduce its rate of decomposition. Secondly, it should be stored in amber bottles away from light since light also aids in its decomposition.
Thirdly, drops of sodium phosphate may be added to prevent its catalytic decomposition during storage.
Answer:
6.72M of HNO3
Explanation:
In the problem you are diluting the original HNO3 solution by the addition of some water. The final volume is:
290.7mL + 350.0mL = 640.7mL
And you are diluting the solution:
640.7mL / 350.0mL = 1.8306 times
As the original concentration was 12.3M, the final concentration will be:
12.3M / 1.8306 =
<h3>6.72M of HNO3</h3>
Answer:
C₂H₇F₂P
Explanation:
Given parameters:
Composition by mass:
C = 24%
H = 7%
F = 38%
P = 31%
Unknown:
Empirical formula of compound;
Solution :
The empirical formula is the simplest formula of a compound. To solve for this, follow the process below;
C H F P
% composition
by mass 24 7 38 31
Molar mass 12 1 19 31
Number of
moles 24/12 7/1 38/19 31/31
2 7 2 1
Dividing
by the
smallest 2/1 7/1 2/1 1/1
2 7 2 1
Empirical formula C₂H₇F₂P
Acetaldehyde is an organic compound (a compound containing C atoms) composed of a carbonyl group. On the other hand, a carbonyl group is a functional group containing C = O. The hybrid orbitals of a compound determines the number pi and s orbitals in the electronic configuration. For a single bond, there are two s orbitals. For double bonds, on the other hand, the number of s orbital bond is 1 while the number of pi bonds is 2. For triple bonds, there are three pi bonds present in the cloud.
Thus for a c = O bond, the atomic orbital configuration is sp3 containing 1 s orbital and 2 pi bonds.