D
Avogadro's number allows us to measure the amount of atoms or molecules in one mole of a substance.
Complete question:
Consider the reaction.
At equilibrium at 600 K, the concentrations are as follows.
2HF -----> H₂ + F₂
[HF] = 5.82 x 10-2 M
[H2] = 8.4 x 10-3 M
[F2] = 8.4 x 10-3 M
What is the value of Keq for the reaction expressed in scientific notation?
2.1 x 10-2
2.1 x 102
1.2 x 103
1.2 x 10-3
Answer:
2.1 × 10^-2
Explanation:
Kequilibrum(Keq) = product/reactant
Equation for the reaction :
2HF -----> H₂ + F₂
Therefore,
Keq = [H2][F2] / [HF]^2
Keq = [8.4 x 10-3][8.4 x 10-3] / [5.82 x 10-2]^2
Keq = [70.56 × 10^(-3 + - 3)]/[33.8724 × 10^(-2×2)]
Keq = [70.56 × 10^-6] / [33.8724 × 10^-4]
Keq = 2.0665 × 10^(-6 - (-4))
Keq = 2.0665 × 10^(-6 + 4)
Keq = 2.1 × 10^-2
We are given that the balanced chemical reaction is:
cacl2⋅2h2o(aq) +
k2c2o4⋅h2o(aq) --->
cac2o4⋅h2o(s) +
2kcl(aq) + 2h2o(l)
We known that
the product was oven dried, therefore the mass of 0.333 g pertains only to that
of the substance cac2o4⋅h2o(s). So what we will do first is to convert this
into moles by dividing the mass with the molar mass. The molar mass of cac2o4⋅h2o(s) is
molar mass of cac2o4 plus the
molar mass of h2o.
molar mass cac2o4⋅h2o(s) = 128.10
+ 18 = 146.10 g /mole
moles cac2o4⋅h2o(s) =
0.333 / 146.10 = 2.28 x 10^-3 moles
Looking at
the balanced chemical reaction, the ratio of cac2o4⋅h2o(s) and k2c2o4⋅h2o(aq) is
1:1, therefore:
moles k2c2o4⋅h2o(aq) = 2.28
x 10^-3 moles
Converting
this to mass:
mass k2c2o4⋅h2o(aq) = 2.28
x 10^-3 moles (184.24 g /mol) = 0.419931006 g
Therefore:
The mass of k2c2o4⋅<span>h2o(aq) in
the salt mixture is about 0.420 g</span>
Answer:
The Moon weighs about 7.349*10^22 kg
How much does “an elephant” weigh? Grown-up elephants vary between 1.7 tons (small wood elephant cow) and 6 tons (big African elephant bull). Let us pick 2.720 tons or 2720 kg as an average weigh one, this is valid for Asian elephants.
A mole of elephants weighs 6.022 * 10^23 x 2720 kg = 1.638 * 10^27 kg.
That is 1,638 * 10^27 / 7,349*10^22 = 22289 times more.
<h2>Answer:</h2>
The correct answer is option C which is, "Electrons in the orbit closest to the nucleus have the least amount of energy".
<h3>
Explanation:</h3>
- There are different orbitals around the nucleus on which the electrons moves around the nucleus.
- These orbitals have a specific energy, due to which they are known as energy levels.
- The energy level near to the nucleus has least amount of the energy and the energy of the orbitals increase as the distance of the orbitals increase to the nucleus.