Here we have to choose the right option which tells the moles of CaCl₂ will react with 6.2 moles of AgNO₃ in the reaction
2AgNO₃ + CaCl₂→ 2AgCl + Ca(NO₃)₂
6.2 moles of silver nitrate (AgNO₃) will react with B. 3.1 moles of calcium chloride (CaCl₂).
From the reaction: 2AgNO₃ + CaCl₂→ 2AgCl + Ca(NO₃)₂
Thus 2 moles of AgNO₃ reacts with 1 mole of CaCl₂
Henceforth, 6.2 moles of AgNO₃ reacts with
= 3.1 moles of CaCl₂.
1 mole of CaCl₂ reacts with 2 moles of AgNO₃. Thus-
A. 2.2 moles of CaCl₂ will react with 2.2×2 = 4.4 moles of AgNO₃.
C. 6.2 moles of CaCl₂ will reacts with 6.2×2 = 12.4 moles of AgNO₃.
D. 12.4 moles of CaCl₂ will reacts with 12.4 × 2 = 24.8 moles of AgNO₃
Thus the right answer is 6.2 moles of AgNO₃ will react with 3.1 moles of CaCl₂.
Molarity is expressed as
the number of moles of solute per volume of the solution. For example, we are
given a solution of 2M NaOH this describes a solution that has 2 moles of NaOH
per 1 L volume of the solution. We calculate as follows:
0.115 M = n mol KBr / .55 L solution
n = 0.06325 mol KBr
mass = 0.06325 mol KBr (119 g / mol) = 7.53 g KBr
<h2>5060 have three significant figures : Explanation given below </h2>
Explanation:
Significant figures
The significant figures (also known as the significant digits and decimal places) of a number are digits that possess certain meaning .
It includes all digits except: zeros
Rules to find significant figures
1.All non-zero digits are considered significant. For example, 23 has two significant figures.
2.Zeros in between two non-zero digits are significant: like in 202.1201 has seven significant figures.
3.Zeros to the left of the significant figures are not significant. For example, .000021 has two significant figures, zeros have no value .
4.Zeros to the right of the significant figures are significant.
That is the reason in number 5060 , it has 3 significant figures .
There can be three possible answers to this question: the amount of moles of SO₂ gas needed to react with 6.41 mol H₂S, and the amount of S and H₂O gas produced.
Amount of SO₂:
6.41 mol H₂S (1 mol SO₂/2 mol 2 mol H₂S) = <em>3.205 moles SO₂ gas</em>
Amount of S:
6.41 mol H₂S (3 mol S/2 mol 2 mol H₂S) =<em> 9.615 moles S solid</em>
Amount of H₂O:
6.41 mol H₂S (2 mol H₂O/2 mol 2 mol H₂S) = <em>6.41 moles H₂O gas</em>
To most geologists, the term "acid test" means placing a drop of dilute (5% to 10%) hydrochloric acid on a rock or mineral and watching for bubbles of carbon<span> dioxide gas to be released. The bubbles signal the presence of carbonate minerals such as</span>calcite<span>, </span>dolomite<span>, or one of the minerals listed in Table 1.</span>