Answer:
Explanation:
Here we have the mass of CO₂ added = 340 g
From

We have, where the molar mass of CO₂ is 44.01 g/mol
Therefore,

71. Included drawing attached
72. Here we have the pressure of the gas given by Charles law which can be resented as follows;

Where:
P₁ = Initial pressure = 6.1 atmospheres
P₂ = Final pressure
T₁ = Initial Temperature = 293 K
T₂ = Initial Temperature = 313 K
Therefore,

Answer:
1.822 g of magnesium hydroxide would be produced.
Explanation:
Balanced reaction: 
Compound Molar mass (g/mol)
NaOH 39.997
95.211
58.3197
So, 2.50 g of NaOH =
mol of NaOH = 0.0625 mol of NaOH
4.30 g of
=
mol of
= 0.0452 mol of 
According to balanced equation-
2 mol of NaOH produce 1 mol of
So, 0.0625 mol of NaOH produce
mol of NaOH or 0.03125 mol of NaOH
1 mol of
produces 1 mol of
So, 0.0452 mol of
produce 0.0452 mol of
As least number of moles of
are produced from NaOH therefore NaOH is the limiting reagent.
So, amount of
would be produced = 0.03125 mol
=
g
= 1.822 g
A.S OLOS kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkll
Answer:
At equal concentration of HBCG and BCG^-, the colour is green. This colour first appears at pH = 3.8
Explanation:
HBCG is an indicator that is prepared by dissolving the solid in ethanol.
Since
Ka=[BCG−][H3O+][HBCG]When [BCG-] = [HBCG], then Ka = [H3O+].
If pH = 3.8
Ka= [H3O+] = -antilog pH = -antilog (3.8)
Ka= 1.58 ×10^-4