Answer:
the reducing flame also called the carburizing flame.
Explanation:
because it gets the oxides of the unknown salts
The ideal gas equation is;
PV = nRT; therefore making P the subject we get;
P = nRT/V
The total number of moles is 0.125 + 0.125 = 0.250 moles
Temperature in kelvin = 273.15 + 18 = 291.15 K
PV = nRT
P = (0.250 × 0.0821 )× 291.15 K ÷ (7.50 L) = 0.796 atm
Thus, the pressure in the container will be 0.796 atm
As he began to teach inorganic chemistry, Mendeleev could not find a textbook that met his needs. Since he had already published a textbook on organic chemistry in 1861 that had been awarded the prestigious Demidov Prize, he set out to write another one. The result was Osnovy khimii (1868–71; The Principles of Chemistry), which became a classic, running through many editions and many translations. When Mendeleev began to compose the chapter on the halogen elements (chlorine and its analogs) at the end of the first volume, he compared the properties of this group of elements to those of the group of alkali metals such as sodium. Within these two groups of dissimilar elements, he discovered similarities in the progression of atomic weights, and he wondered if other groups of elements exhibited similar properties. After studying the alkaline earths, Mendeleev established that the order of atomic weights could be used not only to arrange the elements within each group but also to arrange the groups themselves. Thus, in his effort to make sense of the extensive knowledge that already existed of the chemical and physical properties of the chemical elements and their compounds, Mendeleev discovered the periodic law.
Answer:
0.12693 mg/L
Explanation:
First we <u>calculate the concentration of compound X in the standard prior to dilution</u>:
- 10.751 mg / 100 mL = 0.10751 mg/mL
Then we <u>calculate the concentration of compound X in the standard after dilution</u>:
- 0.10751 mg/mL * 5 mL / 25 mL = 0.021502 mg/L
Now we calculate the<u> concentration of compound X in the sample</u>, using the <em>known concentration of standard and the given areas</em>:
- 2582 * 0.021502 mg/L ÷ 4374 = 0.012693 mg/L
Finally we <u>calculate the concentration of X in the sample prior to dilution</u>:
- 0.012693 mg/L * 50 mL / 5 mL = 0.12693 mg/L
Answer:
The standard heat of formation of Compound X at 25°C is -3095.75 kJ/mol.
Explanation:
Mass of compound X = 7.00 g
Moles of compound X = 
Mass of water in calorimeter ,m= 35.00 kg = 35000 g
Change in temperature of the water in calorimeter = ΔT
ΔT = 2.113°C
Specific heat capacity of water ,c= 4.186 J/g °C
Q = m × c × ΔT

Heat gained by 35 kg of water is equal to the heat released on burning of 0.100 moles of compound X.
Heat of formation of Compound X at 25°C:

= -3095.75 kJ/mol