Answer:
B10 5N +5P= Li6 3N +3P
Cs 137 82N+55P = I 133 80N + 53P
Explanation:
Answer:
-10778.95 J heat must be removed in order to form the ice at 15 °C.
Explanation:
Given data:
mass of steam = 25 g
Initial temperature = 118 °C
Final temperature = 15 °C
Heat released = ?
Solution:
Formula:
q = m . c . ΔT
we know that specific heat of water is 4.186 J/g.°C
ΔT = final temperature - initial temperature
ΔT = 15 °C - 118 °C
ΔT = -103 °C
now we will put the values in formula
q = m . c . ΔT
q = 25 g × 4.186 J/g.°C × -103 °C
q = -10778.95 J
so, -10778.95 J heat must be removed in order to form the ice at 15 °C.
Answer:
Volume of the calcium hydroxide solution used is 0.0235 mL.
Explanation:

Moles of KHP = 
According to reaction, 2 moles of KHP with 1 mole of calcium hydroxide , then 0.0330 moles of KHP will recat with ;
of calcium hydroxide
Molarity of the calcium hydroxide solution = 0.703 M
Volume of calcium hydroxide solution = V



Volume of the calcium hydroxide solution used is 0.0235 mL.
Answer
- continuous removal of PH3
- adding more of P into the system
Explanation:
In the reaction P4(g)+6H2(g) ⇌ 4PH3(g);
- The effect of temperature on equilibrium has to do with the heat of reaction. Recall that for an endothermic reaction, heat is absorbed in the reaction, and the value of ΔH is positive. Thus, for an endothermic reaction, we can picture heat as being a reactant:
heat+A⇌BΔH=+
- Since the reaction is endothermic reaction, heat is a absorbed. Decreasing the temperature will shift the equilibrium to the left, while increasing the temperature will shift the equilibrium to the right forming more of PH3.
- According to Le Chatelier’s principle, adding additional reactant to a system will shift the equilibrium to the right, towards the side of the products. In the same Way, reducing the concentration of the product will also shift equilibrium to the right continually forming PH3 as it is removed.
Answer:
2.12×10²³ atoms.
Explanation:
From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.02×10²³ atoms. This simply means that 1 mole of zirconium also 6.02×10²³ atoms.
Thus, we can obtain the number of atoms present in 0.3521 mole of zirconium as follow:
1 mole of zirconium also 6.02×10²³ atoms.
Therefore, 0.3521 mole of zirconium will contain = 0.3521 × 6.02×10²³ = 2.12×10²³ atoms.
Therefore, 0.3521 mole of zirconium contains 2.12×10²³ atoms.