The answer is Some of the heat used to make the steam is transformed into work as the steam pushes against the blades to make them turn. This also observes the law of conservation in thermodynamics. The kinetic energy in the steam helps push the blades and is converted to mechanical energy. Some of the energy is lost since it is never 100% efficient.
Answer:
1.315x10⁻³M = [Ca²⁺]
Explanation:
Based in the reaction:
Ca₁₀(PO₄)₆(OH)₂(s) ⇄ 10Ca²⁺(aq) + 6PO₄³⁻(aq) + 2OH⁻(aq)
Solubility product, ksp, is defined as:
ksp = [Ca²⁺]¹⁰ [PO₄³⁻]⁶ [OH⁻]²
From 1 mole of hydroxyapatite are produced 10 moles of Ca²⁺ and 6 moles of PO₄³⁻. That means moles of PO₄³⁻ are:
6/10 Ca²⁺ = PO₄³⁻
Replacing in ksp formula:
ksp = [Ca²⁺]¹⁰ [0.6Ca²⁺]⁶ [OH⁻]²
As [OH⁻] is 2.50x10⁻⁶M and ksp is 2.34x10⁻⁵⁹:
2.34x10⁻⁵⁹ = [Ca²⁺]¹⁰ [0.6Ca²⁺]⁶ [2.50x10⁻⁶]²
3.744x10⁻⁴⁸ = 0.046656[Ca²⁺]¹⁶
<em />
<em>1.315x10⁻³M = [Ca²⁺]</em>
<em />
I hope it helps!
<span>Calculating the moles and the moles ratio of the elements gives us the ratio of atoms in each element.
Converting the percentage of element into grams
40.25% carbon = 40.25/100 = .4025 * 100 g of carbon = 40.25g of C
6.19% hydrogen = 6.19/100 = .0619 * 100g g of hydrogen = 6.19g of H
8.94% oxygen = 8.94/100 = .0819 * 100 g of oxygen = 8.19g of O
44.62% bromine = 44.62/100 = .4462 * 100 g of bromine = 44.62g of Br
Converting the grams of element into moles
(48.38 g C) (1 mol/ 12.10 g C) = 4.028 mol C
(8.12 g H) (1 mol/ 1.008 g H) = 8.056 mol H
(53.38 g O) (1 mol/ 16.00 g O) = 3.336 mol O
(44.62g of Br)(0.012515018021626 moles) = 0.55842 mol Br
Calculating the moles ratio of elements by dividing the small number of moles of an element
4.028 mol C /0.55842 = 7.2 mol C x 5 = 36 mol C
8.056 mol H / 0.55842 = 14.42 mol H = 72 mol H
3.336 mol O / 0.55842 = 5.97 mol O = 30 mol O
0.55842 mol Br / 0.55842 = 1mol Br = 5 mol Br
So the empirical formula is (C6H12O5)6Br5</span>
Answer:
Explanation:
CHECK THE ATTACHMENT FOR THE COMPLETE QUESTION AND THE DETAILED EXPLANATION
NOTE:
Equatorial atoms are referred to atoms that are attached to carbons in the cyclohexane ring which is found at the equator of the ring.
Axial atoms are atoms that exist in a bond which is parallel to the axis of the ring in cyclohexane
Answer:
The atomic mass of second isotope is 7.016
Explanation:
Given data:
Average Atomic mass of lithium = 6.941 amu
Atomic mass of first isotope = 6.015 amu
Relative abundance of first isotope = 7.49%
Abundance of second isotope = ?
Atomic mass of other isotope = ?
Solution:
Total abundance = 100%
100 - 7.49 = 92.51%
percentage abundance of second isotope = 92.51%
Now we will calculate the mass if second isotope.
Average atomic mass of lithium = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) / 100
6.941 = (6.015×7.49)+(x×92.51) /100
6.941 = 45.05235 + (x92.51) / 100
6.941×100 = 45.05235 + (x92.51)
694.1 - 45.05235 = (x92.51)
649.04765 = x
92.51
x = 485.583 /92.51
x = 7.016
The atomic mass of second isotope is 7.016