Answer:
53j/k
Explanation:
ΔH = TΔS => ΔS = ΔH/T = 1.5 x 10⁴ joules/283 Kelvin = 53 joules/K
Answer:
As
Explanation:
For any element to exhibit the pattern of ionization energy shown in the question, it must possess five electrons in its outermost shell. These five electrons are not lost at once. They are lost progressively until the valence shell becomes empty. The ionization energy increases steadily as more electrons are lost from the valence shell.
The only pentavalent element among the options in arsenic, hence the answer.
Answer:
454.3 g.
Explanation:
1.0 mol of CaO liberates → – 64.8 kJ.
??? mol of CaO liberates → - 525 kJ.
∴ The no. of moles needed = (1.0 mol)(- 525 kJ)/(- 64.8 kJ) = 8.1 mol.
<em>∴ The no. of grams of CaO needed = no. of moles x molar mass</em> = (8.1 mol)(56.077 g/mol) = <em>454.3 g.</em>
To help, I drew a diagram. This represents an ionic bond between Na and Cl. Na is giving his single electron to Cl, which is indicated by the arrow, to make Cl full with 8 electrons.