Because they frequently have a long half-lives, therefore his stay in the middle is long.
Number 4
If you notice any mistake in my english, please let me know, because i am not native.
Answer:
The final volume is 39.5 L = 0.0395 m³
Explanation:
Step 1: Data given
Initial temperature = 200 °C = 473 K
Volume = 0.0250 m³ = 25 L
Pressure = 1.50 *10^6 Pa
The pressure reduce to 0.950 *10^6 Pa
The temperature stays constant at 200 °C
Step 2: Calculate the volume
P1*V1 = P2*V2
⇒with P1 = the initial pressure = 1.50 * 10^6 Pa
⇒with V1 = the initial volume = 25 L
⇒with P2 = the final pressure = 0.950 * 10^6 Pa
⇒with V2 = the final volume = TO BE DETERMINED
1.50 *10^6 Pa * 25 L = 0.950 *10^6 Pa * V2
V2 = (1.50*10^6 Pa * 25 L) / 0.950 *10^6 Pa)
V2 = 39.5 L = 0.0395 m³
The final volume is 39.5 L = 0.0395 m³
Answer:
CuSO4 + Fe -> FeSO4 + Cu
Explanation:
This reaction is a classic example of a redox reaction. I won't go in too deep, but the basic thing is that electrons from the Fe atom go to the Cu2+ ion. Therefore, Fe becomes an ion, and Cu - an electroneutral atom:
Fe + Cu2+ -> Fe2+ + Cu.
Silver is not a very reactive metal and it does not give up its electrons to Cu.
Answer:
<h2>
The equilibrium constant Kc for this reaction is 19.4760</h2>
Explanation:
The volume of vessel used=
ml
Initial moles of NO=
moles
Initial moles of H2=
moles
Concentration of NO at equilibrium=
M

Moles of NO at equilibrium= 
=
moles
2H2 (g) + 2NO(g) <—> 2H2O (g) + N2 (g)
<u>Initial</u> :1.3*10^-2 2.6*10^-2 0 0 moles
<u>Equilibrium</u>:1.3*10^-2 - x 2.6*10^-2-x x x/2 moles
∴
⇒
![Kc=\frac{[H2O]^2[N2]}{[H2]^2[NO]^2} (volume of vesselin litre)](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BH2O%5D%5E2%5BN2%5D%7D%7B%5BH2%5D%5E2%5BNO%5D%5E2%7D%20%28volume%20of%20vesselin%20litre%29)
<u>Equilibrium</u>:0.31*10^-2 1.61*10^-2 0.99*10^-2 0.495*10^-2 moles
⇒
⇒