percent by mass=(mass of solute/ mass of solution)*100 %
mass of solute=58.5 g
density (H₂O)=1 g/cm³*(1000 cm³/1dm³)=1000 g/dm³
mass of solvent (H₂O)=0.5 dm³ * (1000 g/dm³)=500 g
mass of solution=mass of solvent + mass of solut
mass of solution=58.5 g+500 g=558.5 g
% mass=(58.5 g/558.5 g) * 100%=10.47% of Na.
solution: 10.47% of Na.
ΔS =S(products) -S(reactants)
Where ΔS is the change of entropy in a reactions
a. ΔS = (2) - (2+1) = -1
b. ΔS = (1+1) -(1) = 1
c. ΔS = (1+2) - (1) = 2
d. ΔS = (2) - (2+1) = -1
e. ΔS = (1) - (1) = 0
ΔS is negative for reaction a. and d.
<span>The answer is 13,902 centiliters.
</span>
A strong electrolyte like MgCl2 dissociates completely as per the following reaction:

As you can see, from 1 molecule of MgCl2 produces 3 ions on dissociation.
So, 1 mole of MgCl2 produces 3 moles of ions.
Now, Moles of MgCl2 = Volume x Molarity
= 0.04 x 0.345 [Change volume to Litres]
= 0.0138 moles
Now, total moles of ions = 0.0138 x 3 = 0.0414
Answer:
982.5 kg/m³
Explanation:
When the temperature of a fluid increases, it dilates, and because of the variation of the volume, it's density will vary too. The density can be calculated by the expression:
ρ₁ = ρ₀/(1 + β*(t₁ - t₀))
Where ρ₁ is the final density, ρ₀ the initial density, β is the constant coefficient of volume expansion, t₁ the final temperature, and t₀ the initial temperature.
At t₀ = 4°C, the water desity is ρ₀ = 1,000 kg/m³. The value of the constant for water is β = 0.0002 m³/m³ °C, so, for t₁ = 93°C
ρ₁ = 1,000/(1 + 0.0002*(93 - 4))
ρ₁ = 1,000/(1+ 0.0178)
ρ₁ = 982.5 kg/m³